

APPENDICES

2018 Reliability Needs Assessment (RNA)

A Report by the New York Independent System Operator

Draft For September 26, 2018 MC

Table of Contents

APPENDIX A - 2018 RELIABILITY NEEDS ASSESSMENT GLOSSARY	1
APPENDIX B - THE RELIABILITY PLANNING PROCESS	7
APPENDIX C - LOAD AND ENERGY FORECAST 2018-2028	12
Summary1	2
Historic Overview1	3
Forecast Overview	4
Forecast Methodology1	5
Demand Side Management	16
APPENDIX D - TRANSMISSION SYSTEM SECURITY AND RESOURCE ADEQUACY ASSESSMENTS	22
2018 RNA Assumption Matrix2	3
Assumption Matrix for Transmission Security Assessment	8
RNA Power Flow Base Case Development and Thermal Transfer Limit Results2	8
Development of RNA Power Flow Base Cases	28
Emergency Thermal Transfer Limit Analysis3	8
2018 RNA MARS Model Base Case Development3	9
2018 RNA Short Circuit Assessment4	1
2018 RNA Transmission Security Violations4	7

List of Figures

rigure 1: NYISO's Comprehensive System Planning Process (CSPP)	10
Figure 2: NYISO RPP	11
Figure 3: Summary of Economic & Electric System Growth Rates – Actual & Forecast	12
Figure 4: Historic Energy and Seasonal Peak Demand - Actual and Weather-Normalized	13
Figure 5: Annual Energy and Summer Peak Demand - Actual & Forecast	14
Figure 6: Gold Book Zonal Energy Forecast Growth Rates - 2018 to 2028	17
Figure 7: Gold Book Summer Peak Demand Zonal Forecast Growth Rates - 2018 to 2028	17
Figure 8: Annual Energy by Zone – Actual & 2018 Gold Book Baseline Forecast (GWh)	18
Figure 9: Summer Coincident Peak Demand by Zone – Actual & 2018 Gold Book Baseline Forecast (MW)	19
Figure 10: Winter Coincident Peak Demand by Zone – Actual & 2018 Gold Book Baseline Forecast (MW)	20
Figure 11: Behind-the-Meter Solar PV and 2018 RNA Base Case Annual Energy by Zone – (GWh)	21
Figure 12: Firm Transmission Plans included in 2018 RNA Base Case	30
Figure 13: Emergency Thermal Transfer Limits	38
Figure 14: Dynamic Limit Tables	39
Figure 15: 2018 RNA Fault Current Analysis Summary Table for 2023 System Representation	41
Figure 16: 2018 RNA Transmission Security Analysis Summary Table	48

Appendix A - 2018 Reliability Needs Assessment Glossary

Annual Transmission Reliability Assessment (ATRA): An assessment, conducted by the NYISO staff in cooperation with Market Participants, to determine the System Upgrade Facilities required for each generation and merchant transmission project included in the Applicable Reliability Standards, to interconnect to the New York State Transmission System in compliance with Applicable Reliability Standards and the NYISO Minimum Interconnection Standard. (Source: Attachment S of OATT)

Area Transmission Review (ATR): The NYISO, in its role as Planning Coordinator, is responsible for providing an annual report to the NPCC Compliance Committee in regard to its Area Transmission Review in accordance with the NPCC Reliability Compliance and Enforcement Program and in conformance with the NPCC Design and Operation of the Bulk Power System. (Source: NPCC Directory #1)

Best Technology Available (BTA): NYS DEC policy establishing performance goals for new and existing electricity generating plants for Cooling Water Intake Structures. The policy applies to plants with design intake capacity greater than 20 million gallons/day and prescribes reductions in fish mortality. The performance goals call for the use of wet, closed-cycle cooling systems at existing generating plants. (Source: Section 316(b), Clean Water Act, United States Environmental Protection Agency)

New York State Bulk Power Transmission Facility (BPTF): The facilities identified as the New York State Bulk Power Transmission Facilities in the annual Area Transmission Review submitted to NPCC by the ISO pursuant to NPCC requirements. (Source: Attachment Y of OATT definitions)

Contingencies: An actual or potential unexpected failure or outage of a system component, such as a generator. transmission line, circuit breaker, switch, or other electrical element. A contingency also may include multiple components, which are related by situations leading to simultaneous component outages. (Source: NYSRC Reliability Rules)

Dependable Maximum Net Capability (DMNC): The sustained

maximum net output of a Generator, as demonstrated by the performance of a test or through actual operation, averaged over a continuous time period as defined in the ISO Procedures. (Source: OATT Definitions)

Electric System Planning Work Group (ESPWG): The Electric System Planning Work Group, or any successor work group or committee designated to fulfill the functions assigned to the ESPWG in this tariff. (Source: Attachment S of OATT)

Emergency Transfer Criteria: It is intended that the NYS Bulk Power System be operated within Normal Transfer Criteria at all times insofar as possible. However, in the event that adequate facilities are not available to supply firm load within Normal Transfer Criteria, emergency transfer criteria may be invoked. Under emergency transfer criteria, transfers may be increased up to, but not exceed, emergency ratings and limits as follows:

- a. Pre-contingency line and equipment loadings may be operated up to LTE ratings for up to four (4) hours, provided the STE ratings are set appropriately. Otherwise, precontingency line and equipment loadings must be within normal ratings. Pre-contingency voltages and transmission interface flows must be within applicable pre-contingency voltage and stability limits.
- b. Post-contingency line and equipment loadings within STE ratings. Post-contingency voltages and transmission interface flows within applicable post-contingency voltage and stability limits. (Source: NYSRC Reliability Rules)

Fault: An electrical short circuit. (Source: NYSRC Reliability

Federal Energy Regulatory Commission (FERC): The federal energy regulatory agency within the U.S. Department of Energy that approves the NYISO's tariffs and regulates its operation of the bulk electricity grid, wholesale power markets, and planning and interconnection processes.

FERC Form 715: Annual report that is required by transmitting utilities operating grid facilities that are rated at or above 100 kV. The report consists of transmission systems maps, a detailed description of transmission planning

Reliability Criteria, detailed descriptions of transmission planning assessment practices, and detailed evaluation of anticipated system performance as measured against Reliability Criteria.

Forced Outage: An unscheduled inability of a Market Participant's Generator to produce Energy that does not meet the notification criteria to be classified as a scheduled outage or de-rate as established in ISO Procedures. If the Forced Outage of a Generator starts on or after May 1, 2015, the Forced Outage will expire at the end of the month which contains the 180th day of its Forced Outage but may be extended if the Market Participant has Commenced Repair of its Generator. (Source: Market Services Tariff-MST-Definitions)

Gold Book: Annual NYISO publication of its Load and Capacity Data Report.

Installed Capacity (ICAP): Capacity of a facility accessible to the NYS Bulk Power System, that is capable of supplying and/or reducing the demand for energy in the NYCA for the purpose of ensuring that sufficient energy and capacity is available to meet the reliability rules. (Source: NYSRC Reliability Rules)

Installed Capacity Requirement (ICR): The annual statewide requirement established by the NYSRC in order to ensure resource adequacy in the NYCA. (Source: NYSRC Reliability Rules)

Installed Reserve Margin (IRM): The amount of installed electric generation capacity above 100% of the forecasted peak electric demand that is required to meet NYSRC resource adequacy criteria. Most studies in recent years have indicated a need for a 15-20% reserve margin for adequate reliability in New York.

Local Transmission Plan (LTP): The Local Transmission Owner Plan, developed by each Transmission Owner, which describes its respective plans that may be under consideration or finalized for its own Transmission District. (Source: Attachment Y of OATT)

Local Transmission Planning Process (LTPP): The Local Planning Process conducted by each Transmission Owner for its own Transmission District. (Source: Attachment Y of OATT)

Loss of Load Expectation (LOLE): The probability (or risk) of disconnecting any firm load due to resource deficiencies shall be, on average, not more than once in ten years. Compliance with this criterion shall be evaluated probabilistically, such that the loss of load expectation (LOLE) of disconnecting firm load due to resource deficiencies shall be, on average, no more than 0.1 day per year. This evaluation shall make due allowance for demand uncertainty, scheduled outages and deratings, forced outages and deratings, assistance over interconnections with neighboring control areas, NYS Transmission System emergency transfer capability, and capacity and/or load relief from available operating procedures. (Source: NYSRC Reliability Rules)

Market Monitoring Unit: "Market Monitoring Unit" shall mean the consulting or other professional services firm, or other similar entity, retained by the Board, as specified in Section 30.4.2 of Attachment O. that is responsible for carrying out the Core Market Monitoring Functions and the other functions that are assigned to it in Attachment O. The Market Monitoring Unit shall recommend Tariff and market rule changes, but shall not participate in the administration of the ISO's Tariffs, except as specifically authorized in Attachment O. (Source: Attachment O of MST)

Market Participant: An entity, excluding the ISO, that produces, transmits, sells, and/or purchase for resale Unforced Capacity, Energy or Ancillary Services in the Wholesale Market. Market Participants include: Transmission Customers under the ISO OATT, Customers under the ISO Services Tariff, Power Exchanges, Transmission Owners, Primary Holders, LSEs, Suppliers and their designated agents. Market Participants also include entities buying or selling TCCs. (Source: MST Definitions)

New York Control Area (NYCA): The Control Area that is under the control of the ISO which includes transmission facilities listed in the ISO/TO Agreement Appendices A-1 and A-2, as amended from time-to-time, and Generation located outside the NYS Power System that is subject to protocols (e.g., telemetry signal biasing) which allow the ISO and other Control Area operator(s) to treat some or all of that Generation as though it were part of the NYS Power System.

(Source: OATT Definitions)

New York State Department of Environmental Conservation (NYSDEC): The agency that implements New York State environmental conservation law, with some programs also governed by federal law.

New York Independent System Operator (NYISO): Formed in 1997 and commencing operations in 1999, the NYISO is a not-for-profit organization that manages New York's bulk electricity grid - an 11,056-mile network of high voltage lines that carry electricity throughout the state. The NYISO also oversees the state's wholesale electricity markets. The organization is governed by an independent Board of Directors and a governance structure made up of committees with Market Participants and stakeholders as members.

New York State Department of Public Service (NYDPS): As defined in the New York Public Service Law, it serves as the staff for the New York State Public Service Commission.

New York State Energy Research and Development Authority (NYSERDA): A corporation created under the New York State Public Authorities law and funded by the System Benefits Charge (SBC) and other sources. Among other responsibilities, NYSERDA is charged with conducting a multifaceted energy and environmental research and development program to meet New York State's diverse economic needs, and administering state System Benefits Charge, Renewable Portfolio Standard, energy efficiency programs, the Clean Energy Fund, and the NY-Sun Initiative.

New York State Public Service Commission (NYPSC): The New York State Public Service Commission is the decision making body of the New York State Department of Public Service. The PSC regulates the state's electric, gas, steam, telecommunications, and water utilities and oversees the cable industry. The Commission has the responsibility for setting rates and ensuring that safe and adequate service is provided by New York's utilities. In addition, the Commission exercises jurisdiction over the siting of major gas and electric transmission facilities.

NY-Sun Initiative: A program initiated by Governor Cuomo in 2012 and administered by NYSERDA for the purpose of obtaining more than 3,000 MW-DC of behind-the-meter solar PV by the end of 2023.

New York State Reliability Council (NYSRC): An organization established by agreement among the Member Systems of the New York Power Pool (the "NYSRC Agreement"). (Source: OATT Definitions)

Normal Transfer Criteria: Under normal transfer criteria, adequate facilities are available to supply firm load with the bulk power transmission system within applicable normal ratings and limits as follows:

- a. Pre-contingency line and equipment loadings within normal ratings. Pre-contingency voltages and transmission interface flows within applicable pre-contingency voltage and stability limits.
- b. Post-contingency line and equipment loadings within applicable emergency (LTE or STE) ratings. Post-contingency voltages and transmission interface flows within applicable post-contingency voltage and stability limits.

All contingencies listed in Table B2 "NYSRC Planning Design Criteria: Contingency Event, "in the reliability rules apply under normal transfer criteria. (Source: NYSRC Reliability Rules)

Normal Transfer Limit: The maximum allowable transfer is calculated based on thermal, voltage, and stability testing, considering contingencies, ratings, and limits specified for normal conditions. The normal transfer limit is the lowest limit based on the most restrictive of these three maximum allowable transfers. (Source: NYSRC Reliability Rules)

North American Electric Reliability Corporation (NERC): The North American Electric Reliability Council or, as applicable, the North American Electric Reliability Corporation. (Source: OATT Definitions)

Northeast Power Coordinating Council (NPCC): The Northeast Power Coordinating Council, or any successor organization. (Source: Attachment Y of OATT)

Open Access Transmission Tariff (OATT): Document of Rates, Terms and Conditions, regulated by the FERC, under which the NYISO provides transmission service. The OATT is a dynamic document to which revisions are made on a collaborative basis by the NYISO, New York's Electricity

Market Stakeholders, and the FERC.

Order 890: Adopted by FERC in February 2007, Order 890 is a change to FERC's 1996 transmission open access regulations (established in Orders 888 and 889). Order 890 is intended to provide for more effective competition, transparency and planning in wholesale electricity markets and transmission grid operations, as well as to strengthen the Open Access Transmission Tariff (OATT) with regard to non-discriminatory transmission service. Order 890 requires Transmission Providers - including the NYISO - to have a formal planning process that provides for a coordinated transmission planning process, including reliability and economic planning studies.

Order 1000: The Final Rule entitled Transmission Planning and Cost Allocation by Transmission Owning and Operating Public Utilities, issued by the Commission on July 21, 2011, in Docket RM10-23-001, as modified on rehearing, or upon appeal. (See FERC Stats & Regs. ¶ 31,323 (2011) ("Order No. 1000"), on reh'g and clarification, 139 FERC ¶ 61,132 ("Order No. 1000-A"), on reh'g and clarification, 141 FERC ¶ 61,044 (2012) ("Order No. 1000-B"). (Source: Attachment Y of OATT)

Outage: The forced or scheduled removal of generating capacity or a transmission line from service.

Peak Demand: The maximum instantaneous power demand. measured in megawatts (MW), and also known as peak load, is usually measured and averaged over an hourly interval.

Queue Position: Queue position shall mean the order of a valid Interconnection Request, relative to all other pending valid Interconnection Requests, that is established based upon the date and time of receipt of the valid Interconnection Request by NYISO. (Source: Attachment X of OATT)

Rating: The operational limits of an electric system, facility, or element under a set of specified conditions.

i. Normal Rating: The capacity rating of a transmission facility that may be carried through consecutive twenty- four (24) hour load cycles.

ii. Long Time Emergency (LTE) Rating: The capacity rating of a transmission facility that can be carried through infrequent,

non-consecutive four (4) hour periods.

iii. Short Time Emergency (STE) Rating: The capacity rating of a transmission facility that may be carried during very infrequent contingencies of fifteen (15) minutes or less duration. (Source: NYSRC Reliability Rules)

Reasonably Available Control Technology for Oxides of Nitrogen (NOx RACT): Regulations promulgated by NYSDEC for the control of emissions of nitrogen oxides (NOx) from fossil fuel-fired power plants. The regulations establish presumptive emission limits for each type of fossil fueled generator and fuel used as an electric generator in NY. The NOx RACT limits are part of the State Implementation Plan for achieving compliance with the National Ambient Air Quality Standard (NAAQS) for ozone. (Source: 6 NYCRR Part 277-2)

Reactive Power Resources: Facilities such as generators, high voltage transmission lines, synchronous condensers, capacitor banks, and static VAr compensators that provide reactive power. Reactive power is the portion of electric power that establishes and sustains the electric and magnetic fields of alternating-current equipment. Reactive power is usually expressed as kilovolt-amperes reactive (kVAr) or megavolt-ampere reactive (MVAr).

Regional Greenhouse Gas Initiative (RGGI): A cooperative effort by nine Northeast and Mid-Atlantic states (not including New Jersey or Pennsylvania) to limit greenhouse gas emissions using a market-based cap-and-trade approach. (Source: https://www.rggi.org/)

Reliability: The degree of performance of the bulk electric system that results in electricity being delivered to customers within accepted standards and in the amount desired. Reliability may be measured by the frequency, duration, and magnitude of adverse effects on the electric supply. Electric system reliability can be addressed by considering two basic and functional aspects of the electric system - adequacy and security.

i. Adequacy: The ability of the electric systems to supply the aggregate electrical demand and energy requirements of their customers at all times, taking into account scheduled and reasonably expected unscheduled outages of system elements. Note: Adequacy encompasses both generation and

transmission.

ii. Security: The ability of the electric system to withstand disturbances such as electric short circuits or unanticipated loss of system elements. The ability of the power system to withstand the loss of one or more elements without involuntarily disconnecting firm load. (Source: NYSRC Reliability Rules)

Reliability Criteria: The electric power system planning and operating policies, standards, criteria, guidelines, procedures, and rules promulgated by the North American Electric Reliability Corporation (NERC), Northeast Power Coordinating Council (NPCC), and the New York State Reliability Council (NYSRC), as they may be amended from time to time. (Source: Attachment Y of OATT definition)

Reliability Need: A condition identified by the NYISO in the RNA as a violation or potential violation of Reliability Criteria. (Source: Attachment Y of OATT definition)

Reliability Needs Assessment (RNA): The Reliability Needs Assessment as approved by the ISO Board under this Attachment. (Source: Attachment Y of OATT definition)

Reliability Planning Process (RPP): The biennial process that includes evaluation of resource adequacy and transmission system security of the state's bulk electricity grid over a 10year period and evaluates solutions to meet those needs. The RPP consists of two studies: the RNA, which identifies potential problems, and the CRP, which evaluates specific solutions to those problems. (Source: Attachment Y of OATT)

Reliability Solutions:

i. Alternative Regulated Solutions (ARS): Regulated solutions submitted by a TO or other developer in response to a solicitation for solutions to a Reliability Need identified in an RNA.

ii. Gap Solution: A solution to a Reliability Need that is designed to be temporary and to strive to be compatible with permanent market-based proposals. A permanent regulated solution, if appropriate, may proceed in parallel with a Gap Solution. Note: The NYISO may call for a Gap Solution to an imminent threat to reliability of the Bulk Power Transmission Facilities if no market-based solutions, regulated backstop

solutions, or alternative regulated solutions can meet the Reliability Needs in a timely manner.

iii. Market-Based Solutions: Investor-proposed projects that are driven by market needs to meet future reliability requirements of the bulk electricity grid as outlined in the RNA. Those solutions can include generation, transmission and demand response Programs.

iv. Regulated Backstop Solutions: Proposals required of certain TOs to meet Reliability Needs as outlined in the RNA. Those solutions can include generation, transmission or demand response. Non-Transmission Owner developers may also submit regulated solutions. (Source: Attachment Y of OATT)

Responsible Transmission Owner (Responsible TO): The Transmission Owner or Transmission Owners designated by the ISO, pursuant to Section 31.2.4.3, to prepare a proposal for a regulated backstop solution to a Reliability Need or to proceed with a regulated solution to a Reliability Need. The Responsible Transmission Owner will normally be the Transmission Owner in whose Transmission District the ISO identifies a Reliability Need and/or that owns a transmission facility on which a Reliability Need arises. (Source: Attachment Y of OATT definitions)

Special Case Resources (SCR): Demand Side Resources whose Load is capable of being interrupted upon demand at the direction of the ISO, and/or Demand Side Resources that have a Local Generator, which is not visible to the ISO's Market Information System and is rated 100 kW or higher, that can be operated to reduce Load from the NYS Transmission System or the distribution system at the direction of the ISO. Special Case Resources are subject to special rules, set forth in Section 5.12.11.1 of this ISO Services Tariff and related ISO Procedures, in order to facilitate their participation in the Installed Capacity market as Installed Capacity Suppliers. (Source: Section 2.19 of Market Services Tariff: Special Case Resource ("SCR"))

Study Period: The 10-year time period evaluated in the RNA and CRP. Note: Study Year 1 is the year after the RPP cycle starts and projecting forward 10 years. For example, the 2018 RNA covers the 10-year Study Period of 2019 through

2028. (Source: Attachment Y of OATT definitions).

System Benefits Charge (SBC): An amount of money, charged to ratepayers on their electric bills, which is administered and allocated by NYSERDA towards energy-efficiency programs, research and development initiatives, low-income energy programs, and environmental disclosure activities.

Transfer Capability: The measure of the ability of interconnected electrical systems to reliably move or transfer power from one area to another over all transmission facilities (or paths) between those areas under specified system conditions.

Transmission Constraints: Limitations on the ability of a transmission system to transfer electricity during normal or emergency system conditions.

Transmission Owner (TO): A public utility or authority that owns transmission facilities and provides Transmission Service under the NYISO's tariffs

Transmission Planning Advisory Subcommittee (TPAS): The Transmission Planning Advisory Subcommittee, or any successor work group or committee designated to fulfill the functions assigned to TPAS pursuant to this Attachment. (Source: Attachment Y of OATT)

Unforced Capacity Deliverability Rights (UDR): Unforced Capacity Deliverability Rights ("UDRs") are rights, as measured in MWs, associated with (i) new incremental

controllable transmission projects, and (ii) new projects to increase the capability of existing controllable transmission projects that have UDRs, that provide a transmission interface to a Locality. When combined with Unforced Capacity which is located in an External Control Area or nonconstrained NYCA region either by contract or ownership, and which is deliverable to the NYCA interface in the Locality in which the UDR transmission facility is electrically located, UDRs allow such Unforced Capacity to be treated as if it were located in the Locality, thereby contributing to an LSE's Locational Minimum Installed Capacity Requirement. To the extent the NYCA interface is with an External Control Area the Unforced Capacity associated with UDRs must be deliverable to the Interconnection Point. (Source: MST Definitions)

Weather Normalized: Adjustments made to normalize the impact of weather when making energy and peak demand forecasts. Using historical weather data, energy analysts can account for the influence of extreme weather conditions and adjust actual energy use and peak demand to estimate what would have happened if the hottest day or the coldest day had been the typical, or "normal," weather conditions. "Normal" is usually calculated by taking the average of the previous 20 years of weather data.

Zone: One of the eleven regions in the NYCA connected to each other by identified transmission interfaces and designated as Load Zones A-K.

Appendix B - The Reliability Planning Process

This appendix presents an overview of the NYISO's reliability planning process (RPP). A detailed discussion of the RPP, including applicable Reliability Criteria, is contained in NYISO Manual titled "Reliability Planning Process Manual 26," which is posted on the NYISO's website.

The NYISO RPP is an integral part of the NYISO's overall Comprehensive System Planning Process (CSPP). The CSPP is comprised of four components:

- Local Transmission Planning Process (LTPP),
- Reliability Planning Process (RPP),
- Congestion Assessment and Resource Integration Study (CARIS), and
- Public Policy Transmission Planning Process.

As part of the LTPP, local Transmission Owners perform transmission security studies for their BPTFs in their transmission areas according to all applicable criteria. Links to the Transmission Owner's LTPs can be found on the NYISO's website. The LTPP provides inputs for the RPP.

During the RPP, the NYISO conducts the Reliability Needs Assessment (RNA) and Comprehensive Reliability Plan (CRP). The RNA evaluates the adequacy and security of the bulk power system over a tenyear study period. In identifying resource adequacy needs, the NYISO identifies the amount of resources in megawatts (known as "compensatory megawatts") and the locations in which they are needed to meet those needs. After the RNA is complete, the NYISO requests and evaluates market-based solutions, regulated backstop solutions, and alternative regulated solutions that address the identified Reliability Needs. This step results in the development of the CRP for the ten-year study period.

The RPP is a long-range assessment of both resource adequacy and transmission reliability of the New York bulk power system conducted over a ten-year planning horizon. There are two different aspects to analyzing the bulk power system's reliability in the RNA: adequacy and security. Adequacy is a planning and probabilistic concept. A system is adequate if the probability of having sufficient transmission and generation to meet expected demand is equal to or less than the system's standard, which is expressed as a loss of load expectation (LOLE). The New York State bulk power system is planned to meet an LOLE that, at any given point in time, is less than or equal to an involuntary load disconnection that is not more frequent than once in every 10 years, or 0.1 days per year. This requirement forms the basis of New York's installed reserve margin (IRM) resource adequacy requirement.

Transmission Security is an operating and deterministic concept. N-1 events are evaluated to assess their impact on the system, as viewed from the normal (or 'N') system condition. N-1-0 and N-1-1 analysis

evaluates the ability of the system to meet design criteria after a critical element has already been lost. An N-1or N-1-1 violation occurs when the power flowing through a transmission element exceeds its applicable rating (thermal violation) or the voltage at a bus exceeds its specified range (voltage violation).

The RPP is anchored in the market-based philosophy of the NYISO and its Market Participants, which posits that market solutions should be the preferred choice to meet the identified Reliability Needs reported in the RNA. In the CRP, the reliability of the bulk power system is assessed and solutions to Reliability Needs evaluated in accordance with existing Reliability Criteria of the North American Electric Reliability Corporation (NERC), the Northeast Power Coordinating Council, Inc. (NPCC), and the New York State Reliability Council (NYSRC) as they may change from time to time. These criteria and a description of the nature of long-term bulk power system planning are described in detail in the applicable planning manual, and are briefly summarized below. In the event that market-based solutions do not materialize to meet a Reliability Need in a timely manner, the NYISO designates the Responsible TO or Responsible TOs or developer of an alternative regulated solution to proceed with a regulated solution in order to maintain system reliability. The NYISO may provide regulated cost recovery for transmission solutions constructed to meet a Reliability Need. Under the RPP, the NYISO also has an affirmative obligation to report historic congestion across the transmission system. In addition, the draft RNA is provided to the Market Monitoring Unit for review and consideration of whether market rules changes are necessary to address an identified failure, if any, in one of the NYISO's competitive markets. If market failure is identified as the reason for the lack of market-based solutions, the NYISO will explore appropriate changes in its market rules with its stakeholders and Independent Market Monitor. The RPP does not substitute for the planning that each TO conducts to maintain the reliability of its own bulk and non-bulk power systems.

The NYISO does not license or construct projects to respond to identified Reliability Needs reported in the RNA. The ultimate approval of those projects lies with regulatory agencies such as the FERC, the NYPSC/NYDPS, environmental permitting agencies, and local governments. The NYISO monitors the progress and continued viability of proposed market and regulated projects to meet identified needs, and reports its findings in annual plans.

The CRP also provides inputs for the NYISO's economic planning process known as CARIS. CARIS Phase 1 examines congestion on the New York bulk power system and the costs and benefits of alternatives to alleviate that congestion. During CARIS Phase 2, the NYISO evaluates specific transmission project proposals for regulated cost recovery.

In the event that there is a potential loss of resources due to a proposed generator retirement or mothballing, the NYISO will administer its Generator Deactivation Process (GDP) for Generator

Deactivation Notices that it receives. If necessary, the NYISO will seek solutions to address any Generator Deactivation Reliability Needs identified through that process. The NYISO may enter into Reliability Must Run (RMR) contracts with generators with rate recovery under its tariffs, until a permanent solution is completed. In addition, the NYISO may request solutions outside of its normal planning cycle if there appears to be an imminent threat to the reliability of the Bulk Power Transmission System arising from causes other than deactivating generation.

Another component of the CSPP is the Public Policy Transmission Planning Process. Under this component, interested entities propose, and the NYPSC identify, transmission needs driven by Public Policy Requirements. The NYISO then requests that interested entities submit proposed solutions to the Public Policy Transmission Need(s) identified by the NYPSC. The NYISO evaluates the viability and sufficiency of the proposed solutions to satisfy the identified Public Policy Transmission Need. Upon a confirmation by the NYPSC that a need for a transmission solution still exists, the NYISO then evaluates and may select the more efficient or cost-effective transmission solution to the identified need. The NYISO develops the Public Policy Transmission Planning Report containing its findings regarding the proposed solutions. This report is reviewed by NYISO stakeholders and approved by the Board of Directors.

In concert with these four components, interregional planning is conducted with NYISO's neighboring control areas in the United States and Canada under the Northeastern ISO/RTO Planning Coordination Protocol. The NYISO participates in interregional planning and may consider Interregional Transmission Projects in its regional planning processes.

Figure 1 summarizes the CSPP and Figure 2 summarizes the RPP process.

Figure 1: NYISO's Comprehensive System Planning Process (CSPP)

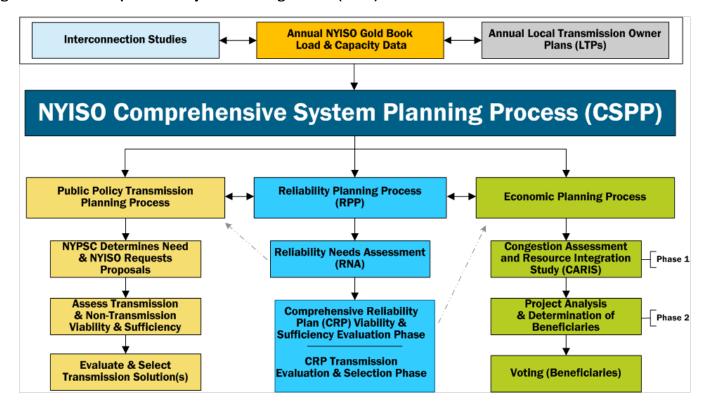
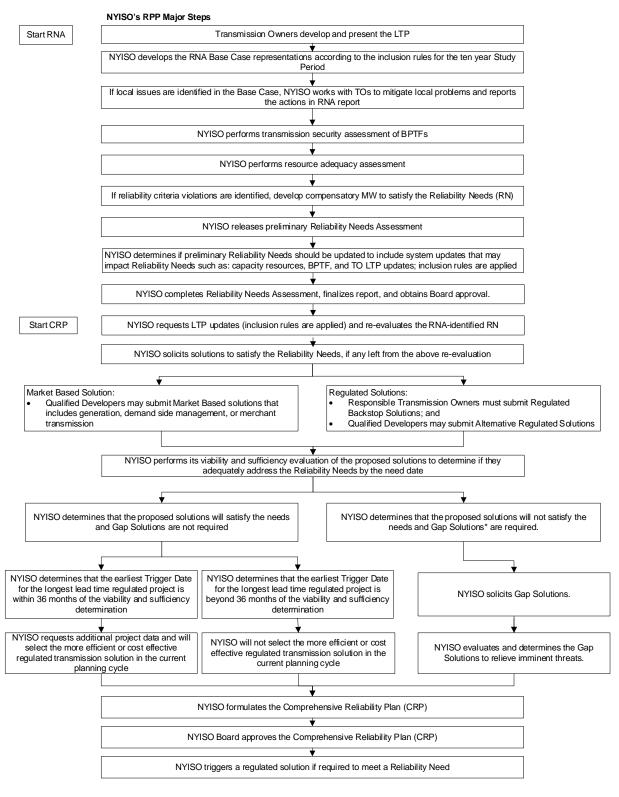



Figure 2: NYISO RPP

If an immediate threat to the reliability of the power system is identified, a Gap Solution outside of the normal RPP cycle may be requested by the NYISO Board.

Appendix C - Load and Energy Forecast 2018-2028

Summary

In order to perform the 2018 RNA, a forecast of summer and winter peak demands and annual energy requirements was produced for the years 2018 - 2028. The electricity forecast is based on projections of New York's economy performed by Moody's Analytics in August 2017. The forecast includes detailed projections of employment, output, income, and other factors for twenty-three regions in New York State. This appendix provides a summary of the electric energy and peak demand forecasts and the key economic input variables used to produce the forecasts. Figure 3 provides a summary of key economic and electric system growth rates from 2007 to 2028.

Figure 3: Summary of Economic & Electric System Growth Rates - Actual & Forecast

		-	-	-				
	Average Annual Growth							
	2007-2012	2012-2017	2018-2023	2023-2028				
Total Employment	0.18%	1.57%	0.52%	0.34%				
Gross State Product	1.43%	0.90%	1.51%	1.47%				
Population	0.49%	0.13%	0.00%	0.02%				
Total Real Income	1.20%	1.95%	1.47%	1.60%				
Weather Normalized Summer Peak	-0.20%	-0.12%	-0.38%	0.11%				
Weather Normalized Annual Energy	-0.33%	-0.83%	-0.33%	0.04%				

Historic Overview

The New York Control Area (NYCA) is a summer peaking system and its summer peak grew faster than annual energy and winter peak over the period from 2007 to 2017 on a weather-adjusted basis. Both summer and winter peaks show considerable year-to-year variability due to the influence of peakproducing weather conditions for the seasonal peaks. Annual energy is influenced by weather conditions over the entire year, which is much less variable than peak-producing conditions.

Figure 4 below reports the NYCA historic seasonal peaks and annual energy growth since 2007. The table provides both actual results and weather-normalized results, together with annual average growth rates for each table entry. The growth rates are averaged over the period 2007 to 2017.

Figure 4: Historic Energy and Seasonal Peak Demand - Actual and Weather-Normalized

	Annual En	ergy- GWh	П	Summer Peak - MW			
	Weather		Ш		Weather		
Year	Actual	Normalized	П	Actual	Normalized		
2007	167,339	166,173		32,169	33,444		
2008	165,612	166,468		32,433	33,670		
2009	158,780	161,908		30,845	33,063		
2010	163,505	161,513		33,453	32,458		
2011	163,329	162,628		33,867	33,019		
2012	162,840	163,458		32,439	33,106		
2013	163,514	163,473		33,956	33,502		
2014	160,059	160,576		29,782	33,291		
2015	161,572	159,884		31,139	33,226		
2016	160,798	159,169		32,075	33,225		
2017	156,370	156,795		29,699	32,914		
	0.690/	0.500/	П	0.000/	0.169/		

	Winter Peak- N	٨W
		Weather
Year	Actual	Normalized
2007-08	25,021	25,490
2008-09	24,673	25,016
2009-10	24,074	24,537
2010-11	24,654	24,452
2011-12	23,901	24,630
2012-13	24,659	24,630
2013-14	25,739	24,610
2014-15	24,648	24,500
2015-16	23,319	24,220
2016-17	24,164	24,416
2017-18	25,081	24,265
	0.02%	-0.49%

Forecast Overview

Figure 5 below shows historic and forecast growth rates of annual energy and summer peak demand for four different regions in New York and in total. The four regions are Zones A to F, Zones G to I, Zone J, and Zone K.

Figure 5: Annual Energy and Summer Peak Demand - Actual & Forecast

		Annı	ıal Energy-	GWh			Summer C	oincident	Peak - MW	
Year	A to F	G to I	J	K	NYCA	A to F	G to I	J	K	NYCA
2007	69,888	19,955	54,750	22,748	167,341	11,475	4,349	10,970	5,375	32,169
2008	68,830	19,486	54,835	22,461	165,612	11,890	4,333	10,979	5,231	32,433
2009	64,982	18,806	53,100	21,892	158,780	11,382	4,034	10,366	5,063	30,845
2010	65,852	19,617	55,114	22,922	163,505	11,822	4,586	11,213	5,832	33,453
2011	67,314	19,252	54,059	22,704	163,329	11,903	4,655	11,374	5,935	33,867
2012	68,084	18,967	53,487	22,302	162,840	12,320	4,288	10,722	5,109	32,439
2013	68,929	19,155	53,316	22,114	163,514	12,251	4,596	11,456	5,653	33,956
2014	67,142	18,808	52,541	21,568	160,059	10,245	3,953	10,567	5,017	29,782
2015	66,970	19,211	53,485	21,906	161,572	11,490	4,113	10,410	5,126	31,139
2016	66,584	18,970	53,653	21,591	160,798	11,765	4,151	10,990	5,169	32,075
2017	64,761	18,528	52,266	20,815	156,370	10,482	4,004	10,241	4,972	29,699
2018	64,830	18,497	52,242	20,551	156,120	11,817	4,362	11,403	5,322	32,904
2019	66,056	18,355	51,860	20,378	156,649	11,924	4,324	11,339	5,270	32,857
2020	65,654	18,215	51,484	20,214	155,567	11,839	4,289	11,276	5,225	32,629
2021	65,221	18,089	51,173	20,084	154,567	11,769	4,260	11,229	5,193	32,451
2022	64,892	18,000	50,992	20,014	153,898	11,717	4,242	11,202	5,178	32,339
2023	64,688	17,954	50,942	20,009	153,593	11,684	4,230	11,194	5,176	32,284
2024	64,547	17,934	50,954	20,041	153,476	11,666	4,225	11,201	5,184	32,276
2025	64,443	17,928	50,989	20,094	153,454	11,660	4,225	11,216	5,198	32,299
2026	64,369	17,933	51,043	20,159	153,504	11,662	4,228	11,238	5,215	32,343
2027	64,349	17,958	51,143	20,241	153,691	11,671	4,233	11,265	5,234	32,403
2028	64,353	17,989	51,259	20,325	153,926	11,682	4,240	11,294	5,253	32,469
2007-17	-0.8%	-0.7%	-0.5%	-0.9%	-0.7%	-0.9%	-0.8%	-0.7%	-0.8%	-0.8%
2018-28	-0.1%	-0.3%	-0.2%	-0.1%	-0.1%	-0.1%	-0.3%	-0.1%	-0.1%	-0.1%
2007-17	-0.5%	-1.0%	-0.5%	-0.4%	-0.5%	1.4%	-0.3%	-0.5%	-1.0%	0.2%
2018-28	-1.0%	-0.5%	-0.5%	-1.4%	-0.8%	-3.2%	-1.4%	-0.9%	-0.5%	-1.7%
2018-23	0.0%	-0.6%	-0.5%	-0.5%	-0.3%	-0.2%	-0.6%	-0.4%	-0.6%	-0.4%
2023-28	-0.1%	0.0%	0.1%	0.3%	0.0%	0.0%	0.0%	0.2%	0.3%	0.1%

Forecast Methodology

The NYISO methodology for producing the long-term forecasts for the Reliability Needs Assessment is described below.

End-use forecasts were developed for zonal energy using monthly data from 2006 through 2017. For each zone, the NYISO estimated a statistically-adjusted end use model of total energy in a zone. The inputs to the model included economic drivers (such as employment and population), cooling degree days, and heating degree days, and trends in technologies for major residential and commercial end uses, such as lighting, cooling, refrigeration, and others. Each zonal forecast was evaluated and compared to historic data, both actual and weather-adjusted usage. The zonal model chosen for the forecast was the one that best represented recent history and the regional growth for that zone. The NYISO also received and evaluated forecasts from all Transmission Owners, which were used in combination with the forecasts the NYISO developed.

The NYISO derive summer & winter non-coincident and coincident peak forecasts from the end use models and compared the results to a method that relied upon trend in load factors. The 2018 summer peak forecast was matched to coincide with the 2018 ICAP forecast.

Demand Side Management

The NYISO developed individual energy and demand forecasts for:

- Energy efficiency impacts;
- Building codes and appliance standards;
- Distributed generation;
- Behind-the-meter solar photovoltaic (PV); and
- Electric vehicles.

The NYISO considered the following factors in developing the 2018 RNA baseline forecast:

- NYPSC-approved spending levels for the programs under its jurisdiction, as described in the Clean Energy Fund Order and related information from NYSERDA;
- Expected realization rates, participation rates, and timing of planned energy efficiency programs;
- Impacts of new appliance efficiency standards, and building codes and standards;
- Specific energy efficiency plans proposed by Long Island Public Authority, The Power Authority of the State of New York, and Consolidated Edison Company of New York, Inc.;
- Results of residential and commercial surveys prepared by NYSERDA and the US Energy Information Administration:
- Actual and projected impacts of behind-the-meter solar PV installations; and
- Actual and projected impacts of distributed energy generation installation.

Once the energy and demand trends of these impacts were developed, the NYISO produced zonal level forecasts by incorporating these end use trends into the statistically adjusted end-use models.

Figure 6: Gold Book Zonal Energy Forecast Growth Rates - 2018 to 2028

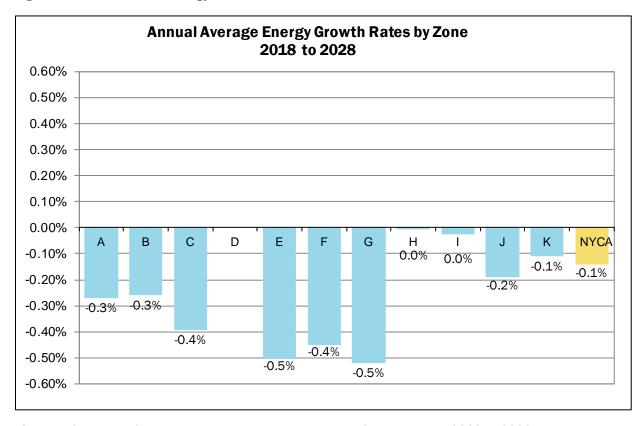


Figure 7: Gold Book Summer Peak Demand Zonal Forecast Growth Rates - 2018 to 2028

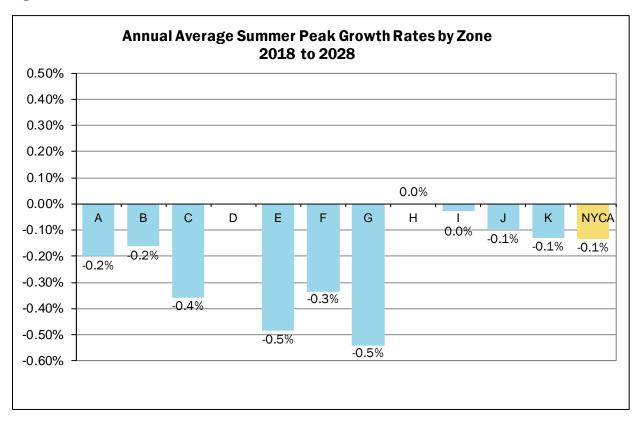


Figure 8: Annual Energy by Zone - Actual & 2018 Gold Book Baseline Forecast (GWh)

Year	Α	В	С	D	E	F	G	Н	l I	J	K	NYCA
2007	16,258	10,207	17,028	6,641	7,837	11,917	10,909	2,702	6,344	54,750	22,748	167,341
2008	15,835	10,089	16,721	6,734	7,856	11,595	10,607	2,935	5,944	54,835	22,461	165,612
2009	15,149	9,860	15,949	5,140	7,893	10,991	10,189	2,917	5,700	53,100	21,892	158,780
2010	15,903	10,128	16,209	4,312	7,906	11,394	10,384	2,969	6,264	55,114	22,922	163,505
2011	16,017	10,040	16,167	5,903	7,752	11,435	10,066	2,978	6,208	54,059	22,704	163,329
2012	15,595	10,009	16,117	6,574	7,943	11,846	9,938	2,930	6,099	53,487	22,302	162,840
2013	15,790	9,981	16,368	6,448	8,312	12,030	9,965	2,986	6,204	53,316	22,114	163,514
2014	15,890	9,902	16,347	4,835	8,158	12,010	9,834	2,886	6,088	52,541	21,568	160,059
2015	15,761	9,906	16,299	4,441	8,141	12,422	10,065	2,847	6,299	53,485	21,906	161,572
2016	15,803	9,995	16,205	4,389	7,894	12,298	9,975	2,856	6,139	53,653	21,591	160,798
2017	15,261	9,775	15,819	4,322	7,761	11,823	9,669	2,883	5,976	52,266	20,815	156,370
2018	15,211	9,841	15,894	4,320	7,681	11,883	9,653	2,928	5,916	52,242	20,551	156,120
2019	15,135	9,776	15,773	5,990	7,605	11,777	9,561	2,913	5,881	51,860	20,378	156,649
2020	15,052	9,709	15,648	6,049	7,529	11,667	9,469	2,899	5,847	51,484	20,214	155,567
2021	14,972	9,648	15,533	6,039	7,460	11,569	9,382	2,887	5,820	51,173	20,084	154,567
2022	14,908	9,605	15,444	6,031	7,408	11,496	9,310	2,882	5,808	50,992	20,014	153,898
2023	14,869	9,582	15,386	6,026	7,374	11,451	9,259	2,884	5,811	50,942	20,009	153,593
2024	14,842	9,570	15,346	6,022	7,349	11,418	9,222	2,889	5,823	50,954	20,041	153,476
2025	14,821	9,565	15,315	6,019	7,330	11,393	9,194	2,896	5,838	50,989	20,094	153,454
2026	14,806	9,566	15,292	6,017	7,315	11,373	9,174	2,904	5,855	51,043	20,159	153,504
2027	14,803	9,575	15,284	6,016	7,307	11,364	9,165	2,915	5,878	51,143	20,241	153,691
2028	14,805	9,588	15,281	6,016	7,303	11,360	9,162	2,926	5,901	51,259	20,325	153,926

Figure 9: Summer Coincident Peak Demand by Zone - Actual & 2018 Gold Book Baseline Forecast (MW)

Year	Α	В	С	D	E	F	G	н	L	J	K	NYCA
2007	2,592	1,860	2,786	795	1,257	2,185	2,316	595	1,438	10,970	5,375	32,169
2008	2,611	2,001	2,939	801	1,268	2,270	2,277	657	1,399	10,979	5,231	32,433
2009	2,595	1,939	2,780	536	1,351	2,181	2,159	596	1,279	10,366	5,063	30,845
2010	2,663	1,985	2,846	552	1,437	2,339	2,399	700	1,487	11,213	5,832	33,453
2011	2,556	2,019	2,872	776	1,447	2,233	2,415	730	1,510	11,374	5,935	33,867
2012	2,743	2,107	2,888	774	1,420	2,388	2,242	653	1,393	10,722	5,109	32,439
2013	2,549	2,030	2,921	819	1,540	2,392	2,358	721	1,517	11,456	5,653	33,956
2014	2,227	1,617	2,574	527	1,267	2,033	2,036	584	1,333	10,567	5,017	29,782
2015	2,632	1,926	2,705	557	1,376	2,294	2,151	617	1,345	10,410	5,126	31,139
2016	2,672	2,008	2,812	561	1,384	2,328	2,123	636	1,392	10,990	5,169	32,075
2017	2,439	1,800	2,557	502	1,152	2,032	2,063	607	1,334	10,241	4,972	29,699
2018	2,801	2,014	2,841	521	1,308	2,332	2,233	674	1,455	11,403	5,322	32,904
2019	2,784	2,001	2,816	719	1,293	2,311	2,205	671	1,448	11,339	5,270	32,857
2020	2,769	1,990	2,792	717	1,279	2,292	2,179	668	1,442	11,276	5,225	32,629
2021	2,757	1,981	2,772	715	1,267	2,277	2,157	666	1,437	11,229	5,193	32,451
2022	2,748	1,974	2,757	714	1,259	2,265	2,141	666	1,435	11,202	5,178	32,339
2023	2,742	1,971	2,747	713	1,253	2,258	2,129	666	1,435	11,194	5,176	32,284
2024	2,739	1,970	2,741	713	1,249	2,254	2,121	667	1,437	11,201	5,184	32,276
2025	2,739	1,972	2,738	712	1,247	2,252	2,117	668	1,440	11,216	5,198	32,299
2026	2,740	1,974	2,738	712	1,246	2,252	2,115	670	1,443	11,238	5,215	32,343
2027	2,743	1,978	2,739	712	1,246	2,253	2,114	672	1,447	11,265	5,234	32,403
2028	2,746	1,982	2,741	712	1,246	2,255	2,115	674	1,451	11,294	5,253	32,469

Figure 10: Winter Coincident Peak Demand by Zone - Actual & 2018 Gold Book Baseline Forecast (MW)

Year	Α	В	С	D	Е	F	G	Н	T.	J	K	NYCA
2007-08	2,336	1,536	2,621	936	1,312	1,886	1,727	524	904	7,643	3,596	25,021
2008-09	2,274	1,567	2,533	930	1,289	1,771	1,634	529	884	7,692	3,570	24,673
2009-10	2,330	1,555	2,558	648	1,289	1,788	1,527	561	813	7,562	3,443	24,074
2010-11	2,413	1,606	2,657	645	1,296	1,825	1,586	526	927	7,661	3,512	24,654
2011-12	2,220	1,535	2,532	904	1,243	1,765	1,618	490	893	7,323	3,378	23,901
2012-13	2,343	1,568	2,672	954	1,348	1,923	1,539	510	947	7,456	3,399	24,659
2013-14	2,358	1,645	2,781	848	1,415	1,989	1,700	625	974	7,810	3,594	25,739
2014-15	2,419	1,617	2,689	725	1,339	1,925	1,556	537	954	7,481	3,406	24,648
2015-16	2,253	1,486	2,469	667	1,307	1,861	1,496	453	889	7,274	3,164	23,319
2016-17	2,295	1,600	2,573	671	1,395	1,867	1,549	530	917	7,482	3,285	24,164
2017-18	2,313	1,533	2,766	735	1,398	2,012	1,638	506	933	7,822	3,425	25,081
2018-19	2,295	1,520	2,618	834	1,332	1,944	1,554	493	903	7,440	3,336	24,269
2019-20	2,275	1,513	2,600	882	1,318	1,933	1,548	491	894	7,377	3,304	24,135
2020-21	2,250	1,507	2,582	879	1,302	1,924	1,544	489	885	7,315	3,271	23,948
2021-22	2,235	1,500	2,566	879	1,292	1,915	1,539	487	880	7,271	3,253	23,817
2022-23	2,226	1,495	2,559	878	1,286	1,908	1,536	488	878	7,247	3,250	23,751
2023-24	2,222	1,492	2,558	879	1,283	1,902	1,535	490	879	7,237	3,253	23,730
2024-25	2,219	1,490	2,556	880	1,283	1,898	1,536	493	880	7,237	3,256	23,728
2025-26	2,216	1,490	2,559	880	1,282	1,896	1,539	494	882	7,242	3,262	23,742
2026-27	2,215	1,489	2,562	880	1,283	1,894	1,542	495	883	7,251	3,268	23,762
2027-28	2,213	1,490	2,563	882	1,283	1,892	1,546	497	885	7,261	3,274	23,786
2028-29	2,212	1,490	2,566	882	1,284	1,891	1,548	499	888	7,273	3,279	23,812

Figure 11: Behind-the-Meter Solar PV and 2018 RNA Base Case Annual Energy by Zone - (GWh)

2018 Gold Book Behind the Meter Solar PV Summer Peak Demand Forecast

Year	Α	В	С	D	Е	F	G	Н	1	J	K	NYCA
2018	23	17	41	3	25	58	75	8	12	54	124	440
2019	30	25	57	4	34	69	99	10	15	68	155	566
2020	39	33	75	6	45	80	122	11	17	81	180	689
2021	46	38	88	7	52	87	140	12	18	91	195	774
2022	52	42	99	8	58	93	155	12	20	100	204	843
2023	56	45	106	9	62	98	167	13	21	107	205	889
2024	60	47	113	9	66	102	178	13	22	112	206	928
2025	63	50	118	10	69	106	186	14	23	117	207	963
2026	65	51	122	10	72	108	194	14	23	121	209	989
2027	68	53	126	11	74	111	201	15	24	124	210	1,017
2028	70	54	130	11	76	113	207	15	24	127	211	1,038

2018 RNA Baseline Forecast With Solar PV

2018	2,824	2,031	2,882	524	1,333	2,390	2,308	682	1,467	11,457	5,446	33,344
2019	2,814	2,026	2,873	723	1,327	2,380	2,304	681	1,463	11,407	5,425	33,423
2020	2,808	2,023	2,867	723	1,324	2,372	2,301	679	1,459	11,357	5,405	33,318
2021	2,803	2,019	2,860	722	1,319	2,364	2,297	678	1,455	11,320	5,388	33,225
2022	2,800	2,016	2,856	722	1,317	2,358	2,296	678	1,455	11,302	5,382	33,182
2023	2,798	2,016	2,853	722	1,315	2,356	2,296	679	1,456	11,301	5,381	33,173
2024	2,799	2,017	2,854	722	1,315	2,356	2,299	680	1,459	11,313	5,390	33,204
2025	2,802	2,022	2,856	722	1,316	2,358	2,303	682	1,463	11,333	5,405	33,262
2026	2,805	2,025	2,860	722	1,318	2,360	2,309	684	1,466	11,359	5,424	33,332
2027	2,811	2,031	2,865	723	1,320	2,364	2,315	687	1,471	11,389	5,444	33,420
2028	2,816	2,036	2,871	723	1,322	2,368	2,322	689	1,475	11,421	5,464	33,507

Appendix D - Transmission System Security and Resource Adequacy Assessments

The analysis performed during the Reliability Needs Assessment requires the development of base cases for transmission security analysis and for resource adequacy analysis. The power flow system model is used for transmission security assessment and also for the development of the transfer limits to be implemented in the Multi-Area Reliability Simulation (MARS) model. The NYISO conducts comprehensive assessment of the transmission system through a series of steady-state power flow, transient stability, and short circuit studies.

The NYISO used the MARS model to determine whether adequate resources would be available to meet the NYSRC and NPCC reliability criteria of one day in ten years (0.1 days/year). The results showed no resource adequacy needs in any of the ten-year Study Period (i.e., 2019 to 2028). The MARS model was also used to evaluate selected scenarios.

2018 RNA Assumption Matrix

#	Parameter	2016 RNA/CRP	2018 RNA
		Study Period: 2017 (y1) - 2026 (y10)	Study Period: 2019 (y1) - 2028 (y10)
Load	Parameters		
1	Peak Load Forecast	Adjusted 2016 Gold Book NYCA baseline	Adjusted 2018 Gold Book NYCA baseline
		peak load forecast.	peak load forecast.
		The GB 2016 baseline peak load forecast	The GB 2018 baseline peak load forecast
		includes the impact (reduction) of behind-	includes the impact (reduction) of behind-
		the-meter (BtM) solar at the time of NYCA	the-meter (BtM) solar at the time of NYCA
		peak. For the Resource Adequacy load	peak. For the Resource Adequacy load
		model, the deducted BtM solar MW was	model, the deducted BtM solar MW was
		added back to the NYCA zonal loads, which	added back to the NYCA zonal loads, which
		then allows for a discrete modeling of the	then allows for a discrete modeling of the
		BtM solar resources.	BtM solar resources.
2	Load Shape (Multiple	Used Multiple Load Shape MARS Feature	Used Multiple Load Shape MARS Feature
	Load Shape)	8760 h historical load shapes were used as	8760 h historical load shapes were used as
		base shapes for LFU bins:	base shapes for LFU bins:
		Bin 1: 2006	Bin 1: 2006
		Bin 2: 2002	Bin 2: 2002
		Bins 3-7: 2007	Bins 3-7: 2007
		Peak adjustments are being performed on a	Peak adjustments are being performed on a
		seasonal basis.	seasonal basis.
3	Load Forecast	Used prior year LFU bin weight figures.	Used updated summer LFU values for the
	Uncertainty (LFU)		11 NYCA zones.
Gener	ration Parameters		
4	Existing Generating Unit	2016 Gold Book values.	2018 Gold Book values.
	Capacities	Used min (DMNC vs. CRIS).	Use summer min (DMNC vs. CRIS).
		Adjusted for RNA inclusion rules.	Use winter min (DMNC vs CRIS).
			Adjusted for RNA inclusion rules.
5	Proposed New Units	GB2016 with Inclusion Rules Applied	GB2018 with Inclusion Rules Applied
	(Non-Renewable)		
6	Retirements. Mothballed	GB2016 with Inclusion Rules Applied	GB2018 with Inclusion Rules Applied
	units, IIFO		
7	Forced and Partial	Five-year (2011-2015) GADS data for each	Five-year (2013-2017) GADS data for each
'	Outage Rates	unit represented. Those units with less than	unit represented. Those units with less than
		five years - use representative data.	five years – use representative data.
		o jesto – dee topiodolitativo data.	yeare accompresentative adda.
		Transition Rates representing the Equivalent	Transition Rates representing the Equivalent
		Forced Outage Rates (EFORd) during	Forced Outage Rates (EFORd) during
		demand periods over the most recent five-	demand periods over the most recent five-
		year period	year period

#	Parameter	2016 RNA/CRP	2018 RNA
π	raiailletei	Study Period: 2017 (y1) - 2026 (y10)	Study Period: 2019 (y1) - 2028 (y10)
8	Planned Outages	Based on schedules received by the NYISO and adjusted for history	Based on schedules received by the NYISO and adjusted for history
9	Summer Maintenance	n/a	Nominal MW
10	Combustion Turbine Derates	Derate based on temperature correction curves	Derate based on temperature correction curves
11	Landfill gas plants	The landfill gas units are assumed to be 2-state units.	New method: Actual hourly plant output over the period 2013-2017. Program randomly selects a LFG shape of hourly production over the 2013-2017 for each model replication.
12	Existing Wind Units (>5 years of data)	Actual hourly plant output over the period 2011-2015. Probabilistic model is incorporated based on five years of input shapes with one shape per replication being randomly selected in Monte Carlo process	Actual hourly plant output over the period 2013-2017. Probabilistic model is incorporated based on five years of input shapes with one shape per replication being randomly selected in Monte Carlo process
13	Existing Wind Units (<5 years of data)	For existing data, the actual hourly plant output over the period 2011-2015 is used. For missing data, the nameplate normalized average of units in the same load zone is scaled by the unit's nameplate.	For existing data, the actual hourly plant output over the period 2013-2017 is used. For missing data, the nameplate normalized average of units in the same load zone is scaled by the unit's nameplate.
14	Proposed Wind Units	Inclusion Rules Applied to determine the generating unit status. The nameplate normalized average of units in the same load zone is scaled by the unit's nameplate.	Inclusion Rules Applied to determine the generating unit status. The nameplate normalized average of units in the same load zone is scaled by the unit's nameplate.
15	Utility-scale Solar Resources	The 31.5 MW metered solar capacity: probabilistic model chooses from 4 years of production data output shapes covering the period 2012-2015. One shape per replication is randomly selected in Monte Carlo process.	The 31.5 MW Upton metered solar capacity: probabilistic model chooses from 5 years of production data output shapes covering the period 2013-2017. One shape per replication is randomly selected in Monte Carlo process.

#	Parameter	2016 RNA/CRP	2018 RNA
		Study Period: 2017 (y1) - 2026 (y10)	
16	BtM Solar Resources	The large projection of increasing retail (BtM) solar installations over the 10- year period required a discrete model with some level of detailed hourly performance.	The large projection of increasing retail (BtM) solar installations over the 10- year period required a discrete model with some level of detailed hourly performance.
		5 years of hourly historic irradiance data from 18 stations in NY was used to develop the required hourly patterns to discretely model this resource. (One shape per replication is randomly selected in Monte Carlo process.)	New method: 8760 hourly shapes are created by using NREL's PV Watt tool (NREL's PVWatts Calculator, credit of the U.S. Department of Energy (DOE)/NREL/Alliance (Alliance for Sustainable Energy, LLC). The shapes are applied during the load adjustment to account for the impact of the BtM generation on both on peak and off peak hours. MARS will randomly select a daily shape from the current month for each day of each month of each replication.
17	BTM-NG Program	n/a	New category: These are former load modifiers to sell capacity into the ICAP market. Model as cogen type 2 unit in MARS. Unit capacity set to CRIS value, load modeled with weekly pattern that can change monthly.
18	Small Hydro Resources	Review of 5- years of unit production data over the years 2011 to 2015 with applicable deration: 46% derate applied to all Run-of-River units, calculated by reviewing unit contribution during peak hours of summer months	New method: Actual hourly plant output over the period 2013-2017. Program randomly selects a Hydro shape of hourly production over the 2013-2017 for each model replication.
19	Large Hydro	Probabilistic Model based on 5- years of GADS data. Transition Rates representing the Equivalent Forced Outage Rates (EFORd) during demand periods over the most recent five-year period (2011-2015). Methodology consistent with thermal unit transition rates.	Probabilistic Model based on 5- years of GADS data. Transition Rates representing the Equivalent Forced Outage Rates (EFORd) during demand periods over the most recent five-year period (2013-2017). Methodology consistent with thermal unit transition rates.
20	Capacity Purchases	Grandfathered Rights and other awarded long-term rights including 20 MW CRIS potentially awarded to HQUS in CY15, additional to the existing 1,090 MW. Modeled using MARS explicit contracts feature.	Grandfathered Rights and other awarded long-term rights Modeled using MARS explicit contracts feature.

#	Parameter	2016 RNA/CRP	2018 RNA				
		Study Period: 2017 (y1) - 2026 (y10)	Study Period: 2019 (y1) - 2028 (y10)				
Trans	action - Imports / Expo	orts					
21	Capacity Sales	These are long-term contracts filed with FERC. Modeled as equivalent contracts sold from ROS (surplus Zones: A,C,D,F,F1). ROS ties to external pool are derated by sales MW amount	These are long-term contracts filed with FERC. Modeled using MARS explicit contracts feature. Contracts sold from ROS (Zones: A-F). ROS ties to external pool are derated by sales MW amount				
22	FCM Sales	Modeled as equivalent contracts sold from ROS (surplus Zones: A,C,D,F). ROS ties to external pool are derated by the sales MW amount	Model sales for known years Modeled using MARS explicit contracts feature. Contracts sold from ROS (Zones: A-F). ROS ties to external pool are derated by sales MW amount				
23	UDRs	Updated with most recent information.	Updated with most recent elections/awards information (VFT, HTP, Neptune, CSC)				
Topol	ogy						
24	Interface Limits	Developed by review of previous studies and specific analysis during the RNA study process	Developed by review of previous studies and specific analysis during the RNA study process				
25	New Transmission	Based on TO- provided firm plans (via Gold Book 2016 process) and proposed merchant transmission; inclusion rules applied	Based on TO- provided firm plans (via Gold Book 2018 process) and proposed merchant transmission; inclusion rules applied				
26	AC Cable Forced Outage Rates	All existing cable transition rates updated with info received from ConEd and PSEG-LIPA to reflect most recent five-year history	All existing cable transition rates updated with info received from ConEd and PSEG-LIPA to reflect most recent five-year history				
27	UDR unavailability	Reflected as part of the AC cables calculation	Five-year history of forced outages				
Emer	gency Operating Proced	lures					
28	Special Case Resources	SCRs sold for the program discounted to historic availability ('effective capacity'). Final Base Cases summer values calculated from the July 2016 registrations, held constant for all years of study	SCRs sold for the program discounted to historic availability ('effective capacity'). Final Base Cases summer values will be calculated from the July 2016 registrations, held constant for all years of study				
29	EDRP Resources	2016 Gold Book with effective capacity modeled	2018 Gold Book with effective capacity modeled				
		Those sold for the program discounted to historic availability. Summer values calculated from July 2016 registrations and forecast growth. Values held constant for all years of study.	Those sold for the program discounted to historic availability. Summer values will be calculated from July 2018 registrations and forecast growth. Values held constant for all years of study.				

#	Parameter	2016 RNA/CRP	2018 RNA				
		the contract of the contract o	Study Period: 2019 (y1) - 2028 (y10)				
30	Other EOPs	Based on TO information, measured data, and NYISO forecasts	Based on TO information, measured data, and NYISO forecasts				
Exterr	nal Control Areas						
31	MLA	As per RNA Procedure External model (load, capacity, topology) provided by PJM/NPCC CP-8 WG. PJM is a 5- zone model. LOLE of pool adjusted to be between 0.10 and 0.15 days per year by adjusting capacity pro-rata in all areas.	As per RNA Procedure External model (load, capacity, topology) provided by PJM/NPCC CP-8 WG. PJM is a 5- zone model. LOLE of pool adjusted to be between 0.10 and 0.15 days per year by adjusting capacity pro-rata in all areas.				
32	ISONE	As per RNA Procedure External model (load, capacity, topology) provided by PJM/NPCC CP-8 WG. LOLE of pool adjusted to be between 0.10 and 0.15 days per year by adjusting capacity pro-rata in all areas.	As per RNA Procedure External model (load, capacity, topology) provided by PJM/NPCC CP-8 WG. LOLE of pool adjusted to be between 0.10 and 0.15 days per year by adjusting capacity pro-rata in all areas.				
33	HQ	As per RNA Procedure External model (load, capacity, topology) provided by PJM/NPCC CP-8 WG. LOLE of pool adjusted to be between 0.10 and 0.15 days per year by adjusting capacity pro-rata in all areas.	As per RNA Procedure External model (load, capacity, topology) provided by PJM/NPCC CP-8 WG. LOLE of pool adjusted to be between 0.10 and 0.15 days per year by adjusting capacity pro-rata in all areas.				
34	IESO	As per RNA Procedure External model (load, capacity, topology) provided by PJM/NPCC CP-8 WG. LOLE of pool adjusted to be between 0.10 and 0.15 days per year by adjusting capacity pro-rata in all areas.	As per RNA Procedure External model (load, capacity, topology) provided by PJM/NPCC CP-8 WG. LOLE of pool adjusted to be between 0.10 and 0.15 days per year by adjusting capacity pro-rata in all areas.				
35	Reserve Sharing	All NPCC Control Areas indicate that they will share reserves equally among all members before sharing with PJM.	All NPCC Control Areas indicate that they will share reserves equally among all members before sharing with PJM.				
36	NYCA Emergency Assistance Limit	No specific NYCA-wide limit	Implemented a statewide limit of 3500 MW				
Misce	llaneous						
37	MARS Model Version	Version 3.20.5	Version 3.22.6				

Assumption Matrix for Transmission Security Assessment

Parameter	2018 RNA Transmission Security	Source
	Studies Modeling Assumptions	
Peak Load	NYCA baseline coincident summer peak	2018 Gold Book
	forecast, which already includes EE and DG	
	(including BtM solar) reductions	
Load model	ConEd: voltage varying	2018 FERC 715 filing
	Rest of NYCA: constant power	
System representation	Per updates received through Databank	NYISO RAD Manual, 2018
	process (Subject to RNA base case inclusion rules)	FERC 715 filing
Inter-area interchange schedules	Consistent with ERAG MMWG interchange schedule	2018 FERC 715 filing, MMWG
Inter-area controllable tie schedules	Consistent with applicable tariffs and known firm contracts or rights	2018 FERC 715 filling
In-city series reactors	Consistent with ConEdison operating	2018 FERC 715 filing, ConEd
	protocol (all series reactors in-service for summer)	protocol
SVCs, FACTS	Set at zero pre-contingency; allowed to adjust post-contingency	NYISO T&D Manual
Transformer & PAR taps	Taps allowed to adjust pre-contingency; fixed post-contingency	2018 FERC 715 filing
Switched shunts	Allowed to adjust pre-contingency; fixed post-contingency	2018 FERC 715 filing
Fault current analysis settings	Per Fault Current Assessment Guideline	NYISO Fault Current
		Assessment Guideline

RNA Power Flow Base Case Development and Thermal Transfer Limit Results

Development of RNA Power Flow Base Cases

The NYISO developed the 2018 RNA Base Cases used in analyzing the performance of the transmission system from the 2018 FERC 715 filing power flow case library. The load representation in the power flow model is the summer peak load forecast reported in the 2018 Gold Book Table 1-3a baseline forecast of coincident peak demand. The system representation for the NPCC Areas in the base cases is from the 2017 Base Case Development libraries compiled by the NPCC SS-37 Base Case Development working group. The NYISO derived the PJM system representation from the PJM Regional Transmission Expansion Plan (RTEP)

planning process models. The remaining models are from the Eastern Interconnection Reliability Assessment Group (ERAG) Multiregional Modeling Working Group (MMWG) 2017 power flow model library.

The NYISO utilized the RNA Base Case inclusion rules to screen the projects and plans for inclusion or exclusion from the 2018 RNA Base Case. The NYISO revised the RNA Base Case inclusion rules as; set forth in Section 3 of the Reliability Planning Process Manual (Manual 26).

Specifically, the 2018 RNA Base Case does not include all projects currently listed on the NYISO's interconnection queue or those shown in the 2018 Gold Book. Rather, it includes only those which met the screening requirements, as shown in the Figure 13 of the main report. The generation deactivation assumptions are reflected in Figure 12 of the main report. The firm transmission plans included in the RNA Base Case are listed in Figure 12 on the next page.

Figure 12: Firm Transmission Plans included in 2018 RNA Base Case

Transmission Owner	Term	inals	Line Length in Miles	Expected I Date		Nominal in	•	# of ckts	Thermal F	Ratings (4)	Project Description / Conductor Size	
Owner			Willes	Prior to (2)	Year	Operating	Design	CKIS	Summer	Winter		
Firm Plans (5) (Included in FERC 715 Base Case)												
CHGE	East Fishkill	Shenandoah	1.98	W	2018	115	115	1	1210	1225	1-1033 ACSR	
CHGE	Hurley Avenue	Leeds	Series Compensation	S	2020	345	345	1	2336	2866	21% Compensation	
CHGE	St. Pool	High Falls	5.61	W	2020	115	115	1	1010	1245	1-795 ACSR	
CHGE	High Falls	Kerhonkson	10.03	W	2020	115	115	1	1010	1245	1-795 ACSR	
CHGE	Modena	Galeville	4.62	W	2020	115	115	1	1010	1245	1-795 ACSR	
CHGE	Galeville	Kerhonkson	8.96	W	2020	115	115	1	1010	1245	1-795 ACSR	
ConEd	East 13th Street	East 13th Street	Reconfiguration	In-Service	2017	345	345		N/A	N/A	Reconfiguration(xfrmr 12 - xfmr 13)	
ConEd	East 13th Street	East 13th Street	Reconfiguration	In-Service	2018	345	345		N/A	N/A	Reconfiguration(xfmr 14 - xfmr 15)	
ConEd	Greenwood	Greenwood	Reconfiguration	In-Service	2018	138	138		N/A	N/A	Reconfiguration	
ConEd	Jamaica	Jamaica	Reconfiguration	In-Service	2018	138	138		N/A	N/A	Reconfiguration	
ConEd	Jamaica	Jamaica	Reconfiguration	S	2019	138	138		N/A	N/A	Reconfiguration	
ConEd	East 13th Street	East 13th Street	xfmr	S	2019	345	345		N/A	N/A	Replacing xmfr 10 and xmfr 11	
ConEd	Gowanus	Gowanus	xfmr	S	2019	345	345		N/A	N/A	Replacing xfmr T2	
ConEd	East 13th Street	East 13th Street	Reconfiguration	S	2019	345	345		N/A	N/A	Reconfiguration (xmfr 10 - xmfr 11)	
ConEd	Rainey	Corona	xfmr/Phase shifter	S	2019	345/138	345/138	1	268 MVA	320 MVA	xmfr/ Phase shifter	
LIPA	Ridge	Coram	-8.50	S	2018	69	69	1	883	976	795 AL	
LIPA	Ridge	West Bartlett	5.85	S	2018	69	69	1	883	976	795 AL	

Transmission Owner	Terminals		Terminals		Line Length in Miles	Expected In		Nominal in	_	# of	Thermal F	Ratings (4)	Project Description / Conductor Size
Owner			willes	Prior to (2)	Year	Operating	Design	ckts gn	Summer	Winter			
LIPA	West Bartlett	Coram	2.65	S	2018	69	69	1	883	976	795 AL		
LIPA	West Hempstead	East Garden City	-2.92	S	2018	69	69	1	1158	1245	477 ACSS		
LIPA	West Hempstead	Hempstead	0.97	S	2018	69	69	1	1158	1245	477 ACSS		
LIPA	Hempstead	East Garden City	1.95	S	2018	69	69	1	1158	1245	477 ACSS		
LIPA	Pilgrim	West Bus	-11.86	S	2019	138	138	1	2087	2565	2493 ACAR		
LIPA	West Bus	Kings Hwy	5.86	S	2019	138	138	1	2087	2565	2493 ACAR		
LIPA	Pilgrim	Kings Hwy	6.00	S	2019	138	138	1	2087	2565	2493 ACAR		
NGRID	Mohican	Battenkill	14.20	In-Service	2017	115	115	1	933	1140	Replace 14.2 miles of conductor w/min 1033.5 ACSR		
NGRID	Mohican	Luther Forest	34.47	In-Service	2017	115	115	1	937	1141	Replace 14.2 miles of conductor w/min 795 kcmil ACSR 26/7		
NGRID	Edic	Edic	xfmr	In-Service	2017	345/115	345/115	2	505MVA	603MVA	Add Transformer for MVEdge (TR#5)		
NGRID	Edic	Marcy Nanocenter	1.3	In-Service	2017	115	115	2	556MVA	680MVA	New Circuit to Customer Station (MVEdge)		
NGRID	Eastover Road	Eastover Road	xfmr #2	In-Service	2018	230/115	230/115	1	381MVA	466MVA	New/2nd 230/115kV Transformer		
NGRID	Gardenville	Erie	0.3	W	2017	115	115	1	939	1144	Replace 400CU and 636AL with 636 ACSR		
NGRID	Oneida	Porter	Reactor	S	2018	115	115	1	-		Install reactor on Line #7; 8%		
NGRID	Porter	Yahnundasis	Reactor	S	2018	115	115	1	-		Install reactor on Line #3; 12%		
NGRID	Elm St	Elm St	xfmr	S	2018	230/23	230/23	1	118MVA	133MVA	Add a fourth 230/23kV transformer		
NGRID	Schodack	Churchtown	-26.74	S	2018	115	115	1	937	1141	Line removal tapped by Falls Park Project		
NGRID	Rotterdam	Rotterdam	-	S	2018	115	115		N/A	N/A	Reconfigure Rotterdam 115kV station to eliminate R1 and R82 Contingencies		
NGRID	Menands	State Campus	5	W	2018	115	115	1	744	744	Replace 3.2 miles of 4/0 Cu conductor with 795kcmil ACSR 26/7		

Transmission	Terminals		Line Length in	Expected In		Nominal in I		# of	Thermal F	tatings (4)	Project Description / Conductor Size
Owner			Miles	Prior to (2)	Year	Operating	Design	ckts	Summer	Winter	, ,
NGRID	Ticonderoga	Ticonderoga	-	W	2018	115	115		N/A	N/A	Install 20MVAR Cap Bank at Ticonderoga
NGRID	Wolf Rd	Menands	4.54	W	2018	115	115	1	808	856	Replace 2.1 miles of 4/0 Cu conductor with 795kcmil ACSR 26/7
NGRID	Golah	Golah	Cap Bank	W	2018	115	115	1	18MVAR	18MVAR	Capacitor Bank
NGRID	Rotterdam	Curry Rd	7	S	2019	115	115	1	808	856	Replace 7.0 miles of mainly 4/0 Cu conductor with 795kcmil ACSR 26/7
NGRID	Batavia	Batavia	Cap Bank	S	2019	115	115	1	30MVAR	30MVAR	Second Capacitor Bank
NGRID	Battenkill	Eastover Road	-22.72	S	2019	115	115	1	937	1141	New Schaghticoke Switching Station
NGRID	Battenkill	Schaghticoke (New Station)	14.31	S	2019	115	115	1	937	1141	New Schaghticoke Switching Station
NGRID	Schaghticoke (New Station)	Eastover Road	8.41	S	2019	115	115	1	937	1141	New Schaghticoke Switching Station
NGRID	Mohican	Luther Forest	-34.47	S	2019	115	115	1	937	1141	New Schaghticoke Switching Station
NGRID	Mohican	Schaghticoke (New Station)	28.13	S	2019	115	115	1	937	1141	New Schaghticoke Switching Station
NGRID	Luther Forest	Schaghticoke (New Station)	6.34	S	2019	115	115	1	1280	1563	New Schaghticoke Switching Station
NGRID	Huntley	Lockport	6.9	S	2019	115	115	2	1303	1380	Replace 6.9 miles of 36 and 37 lines
NGRID	Mortimer	Mortimer	-	S	2019	115	115		N/A	N/A	Second 115kV Bus Tie Breaker at Mortimer Station
NGRID	Rosa Rd	Rosa Rd	-	S	2019	115	115		N/A	N/A	Install 35MVAR Cap Bank at Rosa Rd
NGRID	Ohio St	Ohio St		S	2019	115	115		N/A	N/A	New Distribution Station at Ohio Street
NGRID	Dewitt	Dewitt		S	2019	115	115		N/A	N/A	New Distribution Station at Dewitt
NGRID	Clay	Dewitt	10.24	W	2019	115	115	1	220MVA	268MVA	Reconductor 4/0 CU to 795ACSR
NGRID	Clay	Teall	12.75	W	2019	115	115	1	220 MVA	268MVA	Reconductor 4/0 CU to 795ACSR
NGRID	Mortimer	Mortimer	Reconfiguration	W	2019	115	115	1	N/A	N/A	Reconfiguration of Station

Transmission	Terminals		Line Length in Miles	Expected Ir Date/		Nominal in I		# of	Thermal R	atings (4)	Project Description / Conductor Size
Owner			willes	Prior to (2)	Year	Operating	Design	ckts	Summer	Winter	
NGRID	Spier	Rotterdam (#2)	-32.74	W	2019	115	115	1	1168	1416	New Lasher Rd Switching Station
NGRID	Spier	Lasher Rd (New Station)	21.69	W	2019	115	115	1	1168	1416	New Lasher Rd Switching Station
NGRID	Lasher Rd (New Station)	Rotterdam	11.05	W	2019	115	115	1	2080	2392	New Lasher Rd Switching Station
NGRID	Spier	Luther Forest (#302)	-34.21	W	2019	115	115	1	916	1070	New Lasher Rd Switching Station
NGRID	Spier	Lasher Rd (New Station)	21.72	W	2019	115	115	1	916	1118	New Lasher Rd Switching Station
NGRID	Two Mile Creek	Two Mile Creek		W	2019	115	115		N/A	N/A	New Distribution Station at Two Mile Creek
NGRID	Lasher Rd (New Station)	Luther Forest	12.49	W	2019	115	115	1	990	1070	New Lasher Rd Switching Station
NGRID	Rotterdam	Rotterdam	-	W	2019	115	115		N/A	N/A	Install Series Reactors at Rotterdam Station on lines 17 & 19
NGRID	Albany Steam	Greenbush	6.14	W	2019	115	115	2	1190	1527	Reconductor Albany - Greenbush 115kV lines 1 & 2
NGRID	West Ashville	West Ashville		W	2019	115	115		N/A	N/A	New Distribution Station at West Ashville
NGRID	Sodeman Rd	Sodeman Rd		W	2019	115	115		N/A	N/A	New Distribution Station at Sodeman Road
NGRID	South Oswego	Indeck (#6)	-	S	2020	115	115	1	-	-	Install High Speed Clearing on Line #6
NGRID	Huntley 230kV	Huntley 230kV	-	S	2020	230	230	-	N/A	N/A	Rebuild of Huntley 230kV Station
NGRID	Maple Ave	Maple Ave		S	2020	115	115		N/A	N/A	New Distribution Station at Maple Ave
NGRID	Randall Rd	Randall Rd		S	2020	115	115		N/A	N/A	New Distribution Station at Randall Road
NGRID	Dunkirk	Dunkirk	-	S	2020	115	115	1			Add second bus tie breaker
NGRID	GE	Geres Lock	7.14	S	2020	115	115	1	785	955	Reconductoring 4/0CU & 336 ACSR to 477 ACCR (Line #8)
NGRID	Gardenville 115kV	Gardenville 115kV	-	W	2020	-	-	-	-	-	Rebuild of Gardenville 115kV Station to full breaker and a half
NGRID	Oswego	Oswego	-	W	2020	115	115		N/A	N/A	Rebuild of Oswego 115kV Station

Transmission	Term	inals	Line Length in	Expected Ir Date		Nominal in	_	# of	Thermal F	Ratings (4)	Project Description / Conductor Size
Owner			Miles	Prior to (2)	Year	Operating	Design	ckts	Summer	Winter	
NGRID	Niagara	Packard	3.7	S	2021	115	115	2	331MVA	358MVA	Replace 3.7 miles of 193 and 194 lines
NGRID	New Bethlehem	New Bethlehem	-	S	2021	115	115		N/A	N/A	New Bethlehem 115/13.2kV station
NGRID	Gardenville 230kV	Gardenville 115kV	xfmr	S	2021	230/115	230/115	-	347 MVA	422 MVA	Replacement of 230/115kV TB#4 stepdown with larger unit
NGRID	Porter	Porter	-	S	2022	230	230		N/A	N/A	Porter 230kV BPS upgrades
NGRID	Watertown	Watertown		S	2022	115	115		N/A	N/A	New Distribution Station at Watertown
NGRID	Dunkirk	Dunkirk	-	w	2022	115	115		N/A	N/A	Rebuild of Dunkirk 115kV Station
NGRID	Gardenville	Dunkirk	20.5	S	2023	115	115	2	1105	1346	Replace 20.5 miles of 141 and 142 lines
NYPA	Coopers Corners	Rock Tavern	-46.1	In-Service	2017	345	345	1	3072	3768	New Dolson Avenue Ring Bus Station for CPV Valley project
NYPA	Coopers Corners	Dolson Avenue	32.21	In-Service	2017	345	345	1	3000	3000	New Dolson Avenue Ring Bus Station for CPV Valley project
NYPA	Dolson Avenue	Rock Tavern	13.89	In-Service	2017	345	345	1	3000	3000	New Dolson Avenue Ring Bus Station for CPV Valley project
NYPA	Moses	Moses	Cap Bank	In-Service	2017	115	115	1	100 MVAR	100 MVAR	Cap Bank Installation to Replace Moses Synchronous Condensers
NYPA	Cumberland Head	Gordon Landing	1.63	In-Service	2017	115	230	1	1147	1404	Replacement of PV-20 Submarine Cable
NYPA	Moses	Moses	GSU	In-Service	2017	115/13.8/ 13.8	115/13.8/ 13.8	1	TBD	TBD	Replacement of St. Lawrence Hydro Unit GSU #8
NYPA	Moses	Moses	GSU	In-Service	2017	115/13.8/ 13.8	115/13.8/ 13.8	1	TBD	TBD	Replacement of St. Lawrence Hydro Unit GSU #7
NYPA	Marcy 765	Marcy 345	xfmr	W	2018	765/345	765/345	1	1488 MVA	1793 MVA	Install the Marcy Auto Transformer 1(AT1) spare phase to Marcy AT2
NYPA	Niagara	Rochester	-70.2	W	2020	345	345	1	2177	2662	2-795 ACSR
NYPA	Somerset	Rochester	-44	w	2020	345	345	1	2177	2662	2-795 ACSR
NYPA	Niagara	Station 255 (New Station)	66.4	W	2020	345	345	1	2177	2662	2-795 ACSR
NYPA	Somerset	Station 255 (New Station)	40.2	W	2020	345	345	1	2177	2662	2-795 ACSR

Transmission	Term	inals	Line Length in Miles	Expected I		Nominal in	_	# of	Thermal F	Ratings (4)	Project Description / Conductor Size
Owner			willes	Prior to (2)	Year	Operating	Design	ckts	Summer	Winter	
NYPA	Station 255 (New Station)	Rochester	3.8	W	2020	345	345	1	2177	2662	2-795 ACSR
NYSEG	Elbridge	State Street	14.5	In-Service	In-Service	115	115	1	250 MVA	305 MVA	1033 ACSR
NYSEG	Elbridge	State Street	14.5	In-Service	In-Service	115	115	1	1255	1531	Reconductor 336.4 ACSR to 1194 KCM
NYSEG	Wood Street	Katonah	11.7	In-Service	In-Service	115	115	1	1160	1360	477 ACSR
NYSEG	Wethersfield	Meyer	-31.5	S	2018	230	230	1	1080	1310	795 ACSR
NYSEG	South Perry	Meyer	20	S	2018	230	230	1	1080	1310	795 ACSR
NYSEG	Wethersfield	South Perry	11.5	S	2018	230	230	1	1080	1310	795 ACSR
NYSEG	South Perry	South Perry	xfmr	S	2018	230/115	230/115	1	246 MVA	291 MVA	Transformer
NYSEG	Stephentown	Stephentown	xfmr	S	2018	115/34.5	115/34.5	1	37 MVA	44MVA	Transformer #2
NYSEG	Wood Street	Carmel	1.34	W	2018	115	115	1	261MVA	261MVA	477 ACSR
NYSEG	Flat Street	Flat Street	xfmr	W	2018	115/34.5	115/34.5	2	40MVA	45.2MVA	Transformer #2
NYSEG	Pawling	-	Cap Bank	W	2018	115	115	1	88MVAR	88MVAR	Capacitor Bank
NYSEG	Falls Park 115/34.5kV			S	2019	115/34.5	115/34.5				Tap to interconnect NG Line #14
NYSEG	Falls Park	Schodack(NG)	17.91	S	2019	115	115	1	186 MVA	227 MVA	Tap to interconnect NG Line #14
NYSEG	Falls Park	Churchtown	9.68	S	2019	115	115	1	175 MVA	206 MVA	Tap to interconnect NG Line #14
NYSEG	Falls Park	Falls Park	xfmr	S	2019	115/34.5	115/34.5	1	62 MVA	70 MVA	Transformer #1
NYSEG	Meyer	Meyer	xfmr	S	2019	115/34.5	115/34.5	2	59.2MVA	66.9MVA	Transformer #2
NYSEG	Willet	Willet	xfmr	W	2019	115/34.5	115/34.5	1	39 MVA	44 MVA	Transformer #2
NYSEG	Watercure Road	Watercure Road	xfmr	W	2019	345/230	345/230	1	426 MVA	494 MVA	Transformer #2 and Station Reconfiguration

Transmission Owner	Term	inals	Line Length in Miles	Expected II		Nomina in	_	# of	Thermal R	Ratings (4)	Project Description / Conductor Size
Owner			WITTES	Prior to (2)	Year	Operating	Design	CKIS	Summer	Winter	
NYSEG	Gardenville	Gardenville	xfmr	W	2019	230/115	230/115	1	316 MVA	370 MVA	NYSEG Transformer #3 and Station Reconfiguration
NYSEG	Oakdale 345	Oakdale 115	xfmr	W	2021	345/115	345/115/ 34.5	1	494MVA	527 MVA	Transformer #3 and Station Reconfiguration
NYSEG	Fraser	Fraser	xfmr	W	2021	345/115	345/115	1	305 MVA	364 MVA	Transformer #2 and Station Reconfiguration
NYSEG	Coopers Corners	Coopers Corners	xfmr	S	2022	345/115	345/115	1	232 MVA	270 MVA	Transformer #3 and Station Reconfiguration
NYSEG	Coopers Corners	Coopers Corners	xfmr	S	2022	115/34.5	115/34.5	1	58 MVA	66 MVA	Transformer #2 and Station Reconfiguration
NYSEG	Wood Street	Wood Street	xfmr	S	2022	345/115	345/115	1	327 MVA	378 MVA	Transformer #3
NYSEG	Mountaindale	Old Falls	5.44	S	2022	115	115	1	108	133	Tap 115kV line and Station Reconfiguration to 115kV Operation
NYSEG	Old Falls	West Woodbourne	0.8	S	2022	115	115	1	108	133	Tap 115kV line and Station Reconfiguration to 115kV Operation
0 & R	West Nyack	West Nyack	Cap Bank	S	2018	69	69	1	-	-	Capacitor Bank
O & R/ConEd	Ladentown	Buchanan	-9.5	S	2021	345	345	1	3000	3211	2-2493 ACAR
O & R/ConEd	Ladentown	Lovett 345 kV Station (New	5.5	S	2021	345	345	1	3000	3211	2-2493 ACAR
O & R/ConEd	Lovett 345 kV Station (New	Buchanan	4	S	2021	345	345	1	3000	3211	2-2493 ACAR
0 & R	Lovett 345 kV Station (New	Lovett	xfmr	S	2021	345/138	345/138	1	562 MVA	562 MVA	Transformer
RGE	Station 122 (Station	Station 122 (Station	xfmr	In-Service	In- Service	345/115	345/115	3	494 MVA	527 MVA	Transformer Replacement and Station Reconfiguration (GRTA)
RGE	Station 80	Station 80	-	In-Service	In- Service	345	345				Station 80 Reconfiguration (GRTA)
RGE	Station 33	Station 262	2.97	S	2019	115	115	1	2008	2008	Underground Cable
RGE	Station 262	Station 23	1.46	S	2019	115	115	1	2008	2008	Underground Cable
RGE	Mortimer	Station 251 (Upgrade Line	1	S	2019	115	115	1	400MVA	400MVA	Line Upgrade
RGE	Station 23	Station 23	xfmr	S	2019	115/11.5/ 11.5	115/11.5/ 11.5	2	75 MVA	84 MVA	Transformer

Transmission Owner	Term	inals	Line Length in Miles	Expected In		Nominal in		# of	Thermal F	Ratings (4)	Project Description / Conductor Size	
Owner			Willes	Prior to (2)	Year	Operating	Design	UNIS	Summer	Winter		
RGE	Station 23	Station 23	xfmr	S	2019	115/34.5	115/34.5	2	75 MVA	84 MVA	Transformer	
RGE	Station 42	Station 23	Phase Shifter	S	2019	115	115	1	253 MVA	253 MVA	Phase Shifter	
RGE	Station 262	Station 262	xfmr	S	2019	115/34.5	115/34.5	1	58.8MVA	58.8MVA	Transformer	
RGE	Station 122- Pannell-PC1	Station 122- Pannell-PC1		S	2019	345	345	1	1314 MVA- LTE	1314 MVA- LTE	Relay Replacement	
RGE	Station 82	Station 251 (Upgrade Line		W	2019	115	115	1	400MVA	400MVA	Line Upgrade	
RGE	Station 168	Mortimer (NG Trunk #2)	26.4	S	2020	115	115	1	145 MVA	176 MVA	Station 168 Reinforcement Project	
RGE	Station 168	Elbridge (NG Trunk # 6)	45.5	S	2020	115	115	1	145 MVA	176 MVA	Station 168 Reinforcement Project	
RGE	Station 418	Station 48	7.6	S	2020	115	115	1	175 MVA	225 MVA	New 115kV Line	
RGE	Station 255 (New Station)	Rochester	3.8	W	2020	345	345	1	2177	2662	2-795 ACSR	
RGE	Station 255 (New Station)	Station 255 (New Station)	xfmr	W	2020	345/115	345/115	1	400 MVA	450 MVA	Transformer	
RGE	Station 255 (New Station)	Station 255 (New Station)	xfmr	W	2020	345/115	345/115	2	400 MVA	450 MVA	Transformer	
RGE	Station 255 (New Station)	Station 418	9.6	W	2020	115	115	1	1506	1807	New 115kV Line	
RGE	Station 255 (New Station)	Station 23	11.1	W	2020	115	115	1	1506	1807	New 115kV Line	

Emergency Thermal Transfer Limit Analysis

The NYISO performed analyses of the RNA Base Cases to determine emergency thermal transfer limits for the key interfaces used in the MARS resource adequacy analysis. Figure 13 below reports the emergency thermal transfer limits for the RNA base system conditions.

Figure 13: Emergency Thermal Transfer Limits

Interface	202	3
Dysinger East	2300	1
Volney East	5650	2
Moses South	2650	3
Central East MARS	4450	4
F to G	3475	5
I to J	4400	6
I to K (Y49/Y50)	1293	7

	Limiting Facility	Rating	Contingency
1	Packard - Huntley 230 kV (77)	746	Packard 230/115 kV BK 3
2	Oakdale - Fraser 345 kV	1380	Edic - Fraser 345 kV
3	Marcy 765/345 kV T2 transformer	1971	Marcy 765/345 kV T1
4	Edic - New Scotland 345 kV	1724	Marcy - New Scotland 345 kV
5	Leeds-Pleasant Valley 345 kV	1724	Athens - Pleasant Valley 345 kV
6	Mott Haven - Rainey 345 kV	785	Pre-disturbance
7	Dunwoodie - Shore Rd. 345 kV	653	Pre-disturbance

Figure 14: Dynamic Limit Tables

		Oswego Complex Units*								
							Any 5 (or			
Year	Interface	All available	Any 1 out	Any 2 out	Any 3 out	Any 4 out	more) out			
	Central East MARS	3100	3050	2990	2885	2770	2645			
All	Central East Group	5000	4925	4840	4685	4510	4310			

^{* 9} Mile Point 1, 9 Mile Point 2, FitzPatrick, Oswego 5, Oswego 6, Independence (Modeled as one unit in MARS)

		Barrett St	eam units (1	and 2)
Year	Interface	Both available	Any 1 out	Both out
	Con Ed-LIPA (towards Zone J)	104	74	0
All	Jamaica Ties	505	390	236

		Northport Units				
Year	Interface	All available	Any out			
All	Norwalk CT to K (NNC)	260	404			

		Arthur Kill 2, Arthur Kill 3, Linden Cogen							
			Any AK 2 or						
Year	Interface	All available	Linden out	AK 3 out	Any 2 out				
All	A Line & VFT (towards Zone J)	200	500	700	815				

US DL	Un	its Availal	ole
Limit (MW)	CPV Valley	Cricket Valley	Athens
6950	2	3	3
6750	2	3	2
6700	1	3	3
6550	2	2	3
6150	2	1	3
5950	1	1	3
5800	2	0	3
6600	All o	ther conditi	ions

2018 RNA MARS Model Base Case Development

The NYISO developed the system representations for PJM, Ontario, New England, and Hydro Quebec modeled in the 2018 RNA Base Case from the NPCC CP-8 2017 Summer Assessment. To avoid overdependence on emergency assistance from the external areas, the emergency operating procedure data was removed from the model for each external area. In addition, the capacity of the external areas was further modified such that the LOLE value of each external area was a minimum value of 0.10 and capped at a value of 0.15 through year 10.

The topology used in the MARS model RNA Base Case is located in Figures 21 to 24 in the body of the report. The internal transfer limits modeled are the summer emergency ratings derived from the RNA power flow cases discussed above. The NYISO developed external transfer limits from the NPCC CP-8 Summer Assessment MARS database with changes based upon the RNA Base Case assumptions.

2018 RNA Short Circuit Assessment

Figure 15 below provides the results of NYISO's short circuit screening test for year 5 (2023) of the Study Period. Individual Breaker Analysis (IBA) is required for any breakers the ratings of which were exceeded by the maximum bus fault current. Either NYISO or the responsible Transmission Owner performed the analyses.

Figure 15: 2018 RNA Fault Current Analysis Summary Table for 2023 System Representation

Substation	Nominal Voltage (kV)	Smallest Breaker Rating (kA)	Owner	Maximum Bus Fault (kA)	IBA Required	Breaker(s) Over-dutied
ACADEMY	345	63	Con Ed	31.6	N	Ν
ADIRONDACK	230	25	N. Grid	9.4	N	N
AES SOMERSET	345	40	NYSEG	22.6	N	N
ALPS	345	40	N. Grid	17.8	N	N
ASTE-ERG	138	63	Con Ed	56.4	N	N
ASTE-WRG	138	63	Con Ed	56.4	N	N
ASTORIA W-N	138	45	Con Ed	43.8	N	N
ASTORIA W-S	138	45	Con Ed	43.8	N	N
ASTOR345	345	63	NYPA	46.1	N	N
ATHENS	345	48.8	N. Grid	33.9	N	N
BARRETT1	138	63	LIPA	48.2	N	N
BAYONNE	345	50	Con Ed	26.0	N	N
BOONVILLE	115	29.7	N. Grid	10.6	N	N
BOWLINE 2	345	40	O&R	26.4	N	N
BOWLINE1	345	40	0&R	26.6	N	N
BRKHAVEN	138	37	LIPA	26.8	N	N
BUCH138	138	40	Con Ed	16.4	N	N
BUCHANAN N	345	63	Con Ed	25.2	N	N
BUCHANAN S	345	63	Con Ed	35.0	N	N
C.ISLIP	138	38.9	LIPA	28.0	N	N
CANANDAIGUA	230	40	NYSEG	6.6	N	N
CARLE PL	138	63	LIPA	40.7	N	N
CHASES LAKE	230	40	N. Grid	8.9	N	N
CLARKS CNRS	115	40	NYSEG	18.3	N	N
CLARKS CNRS	345	40	NYSEG	11.8	N	N
CLAY	345	49.1	N. Grid	33.3	N	N
CLAY	115	44.4	N. Grid	37.6	N	N
COOPERS CRN	345	40	NYSEG	18.9	N	N
COOPERS CRN4	115	22.6	NYSEG	19.4	N	N
COOPERS CRN8	115	22.6	NYSEG	19.4	N	N

Substation	Nominal Voltage (kV)	Smallest Breaker Rating (kA)	Owner	Maximum Bus Fault (kA)	IBA Required	Breaker(s) Over-dutied
CORONA-N	138	63	Con Ed	56.0	N	N
CORONA-S	138	63	Con Ed	56.0	N	N
DEWITT	115	63	N. Grid	28.6	N	N
DEWITT	345	40	N. Grid	18.9	N	N
DUFFY AVE	345	58.6	LIPA	8.4	N	N
DULEY	230	40	NYPA	7.6	N	N
DUN NO	138	40	Con Ed	34.6	N	N
DUN SO	138	40	Con Ed	30.1	N	N
DUNKIRK	230	29.6	N. Grid	9.4	N	N
DUNWOODIE	345	63	Con Ed	48.4	N	N
E13 ST	138	63	Con Ed	49.7	N	N
E FISHKILL	115	40	CH	24.4	N	N
E FISHKILL	345	63	Con Ed	42.1	N	N
E13ST 46	345	63	Con Ed	53.9	N	N
EASTOVER	230	50	N. Grid	10.8	N	N
EASTOVER N	115	50	N. Grid	24.7	N	N
EASTVIEW	138	63	Con Ed	35.9	N	N
EDIC	345	40	N. Grid	33.0	N	N
EGC PAR	345	63	NYPA	24.7	N	N
EGC-1	138	80	LIPA	69.1	N	N
EGC-2	138	80	LIPA	69.1	N	N
ELBRIDGE D	115	63	N. Grid	27.6	N	N
ELBRIDGE	345	40	N. Grid	16.0	N	N
ELWOOD 1	138	63	LIPA	39.0	N	N
ELWOOD 2	138	63	LIPA	38.7	N	N
FARRAGUT	345	63	Con Ed	59.8	N	N
FITZPATRICK	345	37	NYPA	41.1	Υ	N
FIVE MILE RD	115	39.7	N. Grid	14.3	N	N
FIVE MILE RD	345	40	N. Grid	7.3	N	N
FRESH KILLS	345	63	Con Ed	27.7	N	N
FRESH KILLS	138	40	Con Ed	36.4	N	N
FRASER	115	40	NYSEG	18.5	N	N
FRASER	345	40	NYSEG	19.2	N	N
FREEPORT	138	63	LIPA	35.5	N	N
GARDEN (NM)	34.5	21	N. Grid	16.9	N	N
GARDEN BS3	115	39.9	N. Grid	38.5	N	N
GARDEN BS4	115	39.9	N. Grid	38.7	N	N
GARDEN BS5-7	115	39.9	N. Grid	38.7	N	N
GARDEN BS6-8	115	39.9	N. Grid	38.8	N	N
GARDENVILLE1	230	32.2	N. Grid	19.5	N	N

Substation	Nominal Voltage (kV)	Smallest Breaker Rating (kA)	Owner	Maximum Bus Fault (kA)	IBA Required	Breaker(s) Over-dutied
GILBOA 345	345	50	NYPA	24.9	N	N
GLNWD NO	138	63	LIPA	44.3	N	N
GLNWD SO	138	63	LIPA	43.8	N	N
GOTHLS	345	63	Con Ed	30.5	N	N
GOWANUS	345	63	Con Ed	29.7	N	N
GREENLWN	138	63	LIPA	28.8	N	N
HAUPAGUE	138	63	LIPA	21.9	N	N
HIGH SHELDON	230	40	NYSEG	10.0	N	N
HILLSIDE #4	115	21.0	NYSEG	18.7	N	N
HILLSIDE #8	115	21.0	NYSEG	18.7	N	N
HILLSIDE 230	230	35.8	NYSEG	14.1	N	N
HILLSIDE#4	34.5	21.6	NYSEG	18.0	N	N
HOLBROOK	138	63	LIPA	48.2	N	N
HOLTSGT-GTs	138	63	LIPA	44.6	N	N
HUNTLEY 68	230	31.8	N. Grid	17.2	N	N
HUNTLEY 70	230	35.8	N. Grid	17.2	N	N
HURLEY	345	40	СН	18.6	N	N
HURLEY AVE	115	37.8	CH	16.3	N	N
INDEPENDENCE	345	41.9	N. Grid	38.3	N	N
JAMAICA	138	63	Con Ed	49.1	N	N
LADENTOWN	345	63	0&R	38.3	N	N
LAFAYETTE	345	40	N. Grid	17.8	N	N
LCST GRV	138	63	LIPA	39.3	N	N
LEEDS	345	40	N. Grid	34.6	N	N
LHH WHITE	115	38.1	N. Grid	10.8	N	N
LKE SCSS1	138	63	LIPA	38.0	N	N
MARCY 345	345	63	NYPA	32.3	N	N
MARCY 765	765	63	NYPA	9.8	N	N
MASSENA 765	765	63	NYPA	7.8	N	N
MEYER	34.5	21.6	NYSEG	11.1	N	N
MEYER	115	18.8	NYSEG	11.3	N	N
MEYER	230	40	NYSEG	7.3	N	N
MIDDLETOWN TAP	345	63	CH	18.9	N	N
MILLR PL	138	63	LIPA	14.7	N	N
MILLWOOD 138	138	40	Con Ed	19.3	N	N
MILLWOOD	345	63	Con Ed	42.2	N	N
MOTT HAVEN	345	63	Con Ed	49.2	N	N
NEWBRID	138	80	LIPA	67.9	N	N
NEWBRIDG	345	58.6	LIPA	8.5	N	N

Substation	Nominal Voltage (kV)	Smallest Breaker Rating (kA)	Owner	Maximum Bus Fault (kA)	IBA Required	Breaker(s) Over-dutied
NIAGARA 345	345	63	NYPA	34.4	N	N
NIAGRA E 115	115	41.4	NYPA	37.8	N	N
NIAGRA E 230	230	63	NYPA	54.4	N	N
NIAGRA W 115	115	41.4	NYPA	27.7	N	N
NIAGRA W 230	230	63	NYPA	54.4	N	N
NMP#1	345	50	N. Grid	43.2	N	N
NMP#2	345	50	N. Grid	43.8	N	N
NRTHPRT1	138	63	LIPA	61.6	N	N
NRTHPRT1-2	138	63	LIPA	61.6	N	N
NRTHPRT2	138	63	LIPA	61.6	N	N
NRTHPRT3	138	63	LIPA	46.1	N	N
NRTHPRT4	138	63	LIPA	46.1	N	N
NSCOT 77B	345	40	N. Grid	31.2	N	N
NSCOT 99B	345	40	N. Grid	31.2	N	N
NSCOT33	115	63	N. Grid	46.3	N	N
NSCOT77	115	63	N. Grid	46.3	N	N
NSCOT99	115	63	N. Grid	46.3	N	N
OAKDALE	34.5	22.9	NYSEG	20.0	N	N
OAKDALE	115	40	NYSEG	30.4	N	N
OAKDALE 345	345	40	NYSEG	12.9	N	N
OAKWOOD	138	63	LIPA	27.9	N	N
ONEIDA EAST	115	28.4	N. Grid	13.2	N	N
ONEIDA WEST	115	28.4	N. Grid	13.2	N	N
OSWEGO	345	40.6	N. Grid	32.2	N	N
OSWEGO M3	115	40	N. Grid	20.8	N	N
PACKARD 2&3	230	47.8	N. Grid	39.9	N	N
PACKARD 4&5	230	47.8	N. Grid	39.9	N	N
PACKARD 6	230	50	N. Grid	40.0	N	N
PACKARD NRTH	115	63	N. Grid	29.4	N	N
PACKARD STH	115	63	N. Grid	26.3	N	N
PATNODE	230	63	NYPA	10.6	N	N
PILGRIM	138	63	LIPA	59.6	N	N
PLATTSBURGH	115	20.7	NYPA	17.6	N	N
PLEASANT VAL	115	37.8	CH	27.6	N	N
PLTVLLEY	345	63	Con Ed	46.4	N	N
PORTER	230	21.1	N. Grid	19.3	N	N
PORTER	115	55.6	N. Grid	40.5	N	N
PT JEFF	138	63	LIPA	32.0	N	N
PL VILLW	345	63	Con Ed	21.8	N	N
PL VILLE	345	63	Con Ed	21.5	N	N

Substation	Nominal Voltage (kV)	Smallest Breaker Rating (kA)	Owner	Maximum Bus Fault (kA)	IBA Required	Breaker(s) Over-dutied
RAINEY	345	63	Con Ed	55.8	N	Ν
RAMAPO	345	63	Con Ed	42.9	N	N
REYNOLDS	345	40	N. Grid	15.4	N	N
REYNOLDS RD	115	43	N. Grid	38.2	N	N
RIVERHD	138	63	LIPA	18.0	N	N
RNKNKOMA	138	63	LIPA	36.3	N	N
ROBINSON RD.	34.5	21.8	NYSEG	8.8	N	N
ROBINSON RD.	115	37.9	NYSEG	17.7	N	N
ROBINSON RD.	230	43	NYSEG	13.7	N	N
ROCK TAV	115	39.5	CH	25.2	N	N
ROCK TAVERN	345	63	CH	33.7	N	N
ROSETON	345	63	CH	37.5	N	N
ROSLYN	138	63	LIPA	30.5	N	N
ROTTERDAM66H	230	40	N. Grid	13.6	N	N
ROTTERDAM77H	230	23.6	N. Grid	13.5	N	N
ROTTERDAM99H	230	23.2	N. Grid	13.6	N	N
RULND RD	138	63	LIPA	45.0	N	N
RYAN	230	40	NYPA	10.8	N	N
S OSWEGO	115	39.2	N. Grid	20.4	N	N
S RIPLEY	230	40	N. Grid	8.8	N	N
S013A	115	37.6	RGE	24.5	N	N
S080 345kV	345	40	RGE	18.7	N	N
S080 922	115	39.1	RGE	16.6	N	N
S082 B2	115	40	RGE	35.9	N	N
S082 B3	115	40	RGE	35.8	N	N
S122	345	40	RGE	17.6	N	N
DUN NO S6	138	63	Con Ed	29.1	N	N
DUN SO N7	138	63	Con Ed	26.4	N	N
SCHUYLER	115	36	N. Grid	15.3	N	N
SCRIBA	345	48.3	N. Grid	46.6	N	N
SCRIBA C	115	40	N. Grid	10.4	N	N
SCRIBA D	115	40	N. Grid	10.4	N	N
SHORE RD	345	63	LIPA	27.1	N	N
SHORE RD1	138	57.8	LIPA	47.4	N	N
SHORE RD2	138	57.8	LIPA	47.4	N	N
SHOREHAM1	138	52.2	LIPA	27.8	N	N
SHOREHAM2	138	63	LIPA	27.8	N	N
SILLS RD1	138	63	LIPA	31.6	N	N
SMAH	138	40	RECO	26.7	N	N
SPRAINBROOK	345	63	Con Ed	49.4	N	N

Substation	Nominal Voltage (kV)	Smallest Breaker Rating (kA)	Owner	Maximum Bus Fault (kA)	IBA Required	Breaker(s) Over-dutied
ST LAWRN 115	115	41.4	NYPA	41.4	N	N
ST LAWRN 230	230	33.1	NYPA	32.1	N	N
STOLLE	115	23.9	NYSEG	19.5	N	N
STOLLE ROAD	345	40	NYSEG	8.9	N	N
STOLLE ROAD	230	40	NYSEG	13.4	N	N
STONEYRIDGE	230	40	NYSEG	7.3	N	N
STONY CREEK	230	40	NYSEG	8.9	N	N
SUGLF 345TAP	345	63	CH	25.3	N	N
SYOSSET	138	63	LIPA	33.8	N	N
TEALL	115	40	N. Grid	25.9	N	N
TERMINAL	115	28.4	N. Grid	16.9	N	N
SECT 11	138	63	Con Ed	42.3	N	N
SECT 12	138	63	Con Ed	42.2	N	N
MHTX2	138	50	Con Ed	13.7	N	N
VALLEY	115	40	N. Grid	8.4	N	N
VERNON-E	138	63	Con Ed	46.5	N	N
VERNON-W	138	63	Con Ed	34.0	N	N
VLY STRM1	138	63	LIPA	53.2	N	N
VLY STRM2	138	63	LIPA	53.4	N	N
VOLNEY	345	44.8	N. Grid	36.1	N	N
W 49 ST	345	63	Con Ed	50.9	N	N
WADNGRV1	138	56.4	LIPA	25.6	N	N
WATERCURE230	230	40	NYSEG	14.1	N	N
WATERCURE345	345	40	NYSEG	9.3	N	N
WATKINS	115	40	N. Grid	8.6	N	N
WETHERSFIELD	230	40	NYSEG	8.7	N	N
WHAV	138	40	O&R	25.8	N	N
WILDWOOD	138	63	LIPA	27.8	N	N
WILLIS 230	230	33.1	NYPA	13.5	N	N
WOOD ST.	115	40	NYSEG	19.7	N	N
WOODARD	115	35.7	N. Grid	15.5	N	N
YAHNUNDASIS	115	25.1	N. Grid	6.5	N	N

2018 RNA Transmission Security Violations

The preliminary transmission security assessment identified a Reliability Need in year 10 (2028) in Eastern Long Island. A LIPA LTP update at the June 28 ESPWG/TPAS meeting resolved this Reliability Need. Also, the transmission security assessment observed thermal violations in year 1 (2019); however, these overloads are not considered Reliability Needs because the Responsible TOs have LTPs identified in the 2018 Gold Book to address them, and will use interim operating procedures to maintain the security of the system until the LTPs are placed in-service. Year 1, year 5, and year 10 were studied and the top 10 BPTF violations identified in the analyses are shown in Figure 16 on the next page. The mitigation plans are discussed in the report.

Figure 16: 2018 RNA Transmission Security Analysis Summary Table

Study Year	Zone	Owner	Monitored Element	Base Case Rating [MVA]	Contingency Rating [MVA]	Initial Condition	Contingency	% Overload				
	Preliminary Reliability Needs (subsequently mitigated by LIPA's updated LTPs)											
Y-10	K	LIPA	Brookhaven - Edwards Ave. (#864) 138	264	324	138-890	Base Case	101				
			Transmission Securit	ty Violations th	at are being ad	dressed with Mitigation Plans	and LTPs					
Y-01	С	N. Grid	Clay - Dewitt (#3) 115 (Clay - Bartell Rd)	116	120	CLAY - TEAL 10 115	SB:DEWI345_R220	109				
Y-01	С	N. Grid	Clay - Dewitt (#3) 115 (Clay - Bartell Rd)	116	120	CLAY - TEAL 10 115	SB:DEWI345_R915	109				
Y-01	С	N. Grid	Clay - Dewitt (#3) 115 (Clay - Bartell Rd)	116	120	CLAY - TEAL 10 115	SB:DEWI345_R130	109				
Y-01	С	N. Grid	Clay - Dewitt (#3) 115 (Clay - Bartell Rd)	116	120	CLAY - TEAL 10 115	DEWITT 345/115 2TR	107				
Y-01	С	N. Grid	Clay - Dewitt (#3) 115 (Clay - Bartell Rd)	116	120	CLAY - DEW 5 115	SB:DEWI345_R220	103				
Y-01	С	N. Grid	Clay - Dewitt (#3) 115 (Clay - Bartell Rd)	116	120	CLAY - DEW 5 115	SB:DEWI345_R915	103				
Y-01	С	N. Grid	Clay - Dewitt (#3) 115 (Clay - Bartell Rd)	116	120	CLAY - DEW 5 115	SB:DEWI345_R130	103				
Y-01	С	N. Grid	Clay - Dewitt (#3) 115 (Clay - Bartell Rd)	116	120	DEWITT 345/115 2TR	SB:CLAY115_R875	102				
Y-01	С	N. Grid	Clay - Dewitt (#3) 115 (Clay - Bartell Rd)	116	120	OS - EL - LFYTE 345 17	CLAY - DEW 345 13	102				

Study Year	Zone	Owner	Monitored Element	Base Case Rating [MVA]	Contingency Rating [MVA]	Initial Condition	Contingency	% Overload
			Transmission Securit	ty Violations th	at are being ad	dressed with Mitigation Plans	and LTPs	
Y-01	С	N. Grid	Clay - Teall (#10) 115 (Clay - Bartell Rd - Pine Grove)	116	120	CLAY - DEW 3 115	SB:DEWI345_R220	113
Y-01	С	N. Grid	Clay - Teall (#10) 115 (Clay - Bartell Rd - Pine Grove)	116	120	CLAY - DEW 3 115	SB:DEWI345_R915	113
Y-01	С	N. Grid	Clay - Teall (#10) 115 (Clay - Bartell Rd - Pine Grove)	116	120	CLAY - DEW 3 115	SB:DEWI345_R130	113
Y-01	С	N. Grid	Clay - Teall (#10) 115 (Clay - Bartell Rd - Pine Grove)	116	120	CLAY - DEW 3 115	DEWITT 345/115 2TR	110
Y-01	С	N. Grid	Clay - Teall (#10) 115 (Clay - Bartell Rd - Pine Grove)	116	120	DEWITT 345/115 2TR	CLAY - TEAL 11 115	108
Y-01	С	N. Grid	Clay - Teall (#10) 115 (Clay - Bartell Rd - Pine Grove)	116	120	DEWITT 345/115 2TR	SB:CLAY115_R865	107
Y-01	С	N. Grid	Clay - Teall (#10) 115 (Clay - Bartell Rd - Pine Grove)	116	120	DEWITT 345/115 2TR	SB:CLAY115_R110	107
Y-01	С	N. Grid	Clay - Teall (#10) 115 (Clay - Bartell Rd - Pine Grove)	116	120	CLAY - TEAL 11 115	SB:DEWI345_R220	104
Y-01	С	N. Grid	Clay - Teall (#10) 115 (Clay - Bartell Rd - Pine Grove)	116	120	CLAY - TEAL 11 115	SB:DEWI345_R915	104
Y-01	С	N. Grid	Clay - Teall (#10) 115 (Clay - Bartell Rd - Pine Grove)	116	120	CLAY - TEAL 11 115	SB:DEWI345_R130	104

Study Year	Zone	Owner	Monitored Element	Base Case Rating [MVA]	Contingency Rating [MVA]	Initial Condition	Contingency	% Overload
Y-01	G	O&R	W. Haverstraw (#671) 345/138	501	607	O&RLINE-60	SB:LADE_6-56-2	103
Y-01	G	O&R	W. Haverstraw (#671) 345/138	501	607	O&RLINE-60	BOWLN 345/138 TR	103
Y-01	G	O&R	W. Haverstraw (#671) 345/138	501	607	BOWLN 345/138 TR	O&RLINE-60	103
Y-01	G	O&R	W. Haverstraw (#671) 345/138	501	607	O&RLINE-60	LDNTWN - BOWLINE 345 68	102
Y-01	G	O&R	W. Haverstraw (#671) 345/138	501	607	LDNTWN - BOWLINE 345 68	O&RLINE-60	102